Introduction to Number Theory Week 4 Handout

> 18/10/18

1 Introduction

Next week please hand in the solutions to the following exercises on Sheet 3: Q2(3), Q3, Q4(3), Q6. We will do the rest in class.

2 Comments on Sheet 1

2.1 General comments

- I only received homework from 5 people last week! It is very good practice for the exams for you to attempt the tutorial sheets (now and not a week before the exam!). A lot of the questions on the exams will be things from lecture notes and the tutorial sheets.
- I noticed a lot of people are writing down correct things but with little justification. An example is in Question 2 which I shall touch on below. You must always write down the reason for a correct statement else you will not get full marks!

2.2 Question 2

A lot of proofs for the first part of this question went along the following lines:
Proof. By Bézout's Lemma there exist $u, v \in \mathbb{Z}$ such that

$$
\begin{aligned}
\operatorname{gcd}(m a, m b) & =u m a+v m b \\
& =m(u a+v b) \\
& =|m| \operatorname{gcd}(a, b)
\end{aligned}
$$

The issue with this proof is that we are assuming that the u, v hypothesised to exist are dependent on $m a$ and $m b$. It is not automatically true that $\operatorname{gcd}(a, b)=u a+v b$ with the same \boldsymbol{u} and \boldsymbol{v}. If you think about it, that is exactly what we are trying to prove! The reason why this is true requires further justification along the lines of $\operatorname{gcd}(m a, m b)$ is the smallest positive number of the form $u m a+v m b$. Hence $|m| \operatorname{gcd}(a, b)$ is the smallest positive number of the form $u a+v b$.

3 A Hensel's Lemma example

Exercise. Consider the polynomial $f(X)=X^{3}+1$. Find a solution to $f(X)$ modulo 8 .
Solution. We could just check every element of $\mathbb{Z} / 8 \mathbb{Z}\left(i . e \mathbb{Z}_{8}\right)$ but that's no fun. Let's use Hensel's Lemma to do it. The moral of Hensel's Lemma is as follows:

If we can find a solution modulo p^{r}, we might be able to find a solution modulo p^{r+1}
This process of creating new solutions in higher prime-power orders is called "lifting" - we'll see why at the end of this solution.

So lets lift from $\mathbb{Z} / 4 \mathbb{Z}$ to $\mathbb{Z} / 8 \mathbb{Z}$ since its fairly easy: $\mathbb{Z} / 4 \mathbb{Z}=\left\{[0]_{4},[1]_{4},[2]_{4},[3]_{4}\right\}$ so it's not too difficult to check each residue class. It turns out that

$$
f(3) \equiv 0 \quad(\bmod 4)
$$

So we have a candidate solution modulo 4 to work with: $x_{2}=3$. We need to check that the derivative doesn't vanish at this number modulo the base prime which is 2 in this case. Our calculus kicks into gear and we get $f^{\prime}(X)=3 X^{2}$ and

$$
f^{\prime}(3)=3(3)^{2}=27 \equiv 1 \quad(\bmod 2)
$$

which is evidently not 0 so we can indeed apply Hensel's Lemma to this problem. The Lemma tells us that there exists an $x_{3} \in \mathbb{Z}$ such that $f(3) \equiv 0(\bmod 8)$ and $x_{3} \equiv x_{2}(\bmod 4)$. Explicitly, we have that

$$
\begin{aligned}
x_{3} & =x_{2}-f\left(x_{r}\right) u \\
& =3-28 u
\end{aligned}
$$

where u is an inverse of $f^{\prime}\left(x_{2}\right)=27$ modulo 2 . That's just 1 so we get

$$
x_{3}=3-28=-25 \equiv 7 \quad(\bmod 8)
$$

Let's just make sure this does satisfy the properties we claim:

$$
\begin{aligned}
f\left(x_{3}\right) & =7^{3}+1=344 \equiv 0 \quad(\bmod 8) \\
x_{3} & =7 \equiv 3 \quad(\bmod 4) \\
& =x_{2}
\end{aligned}
$$

So $x_{3}=7$ is a solution. So why do we call this a lift anyway? Well, lets write out $x_{2}=3$ and $x_{3}=7$ in their base 2 expansions:

$$
\begin{aligned}
& x_{2}=3=\quad 1 \cdot 2^{1}+1 \cdot 2^{0} \\
& x_{3}=7=1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
\end{aligned}
$$

As you can see, x_{3} is really just a sort of 'extension' of x_{2} : we've added another power of 2 to the expansion in this particular case - this is exactly what the property $x_{3} \equiv x_{2}\left(\bmod 4=2^{2}\right)$ encodes.

