Introduction to Number Theory Week 2 Handout

$$
04 / 10 / 18
$$

1 Introduction

Tutor Name: Alexandre (Alex) Daoud (S5.13)
Email: alexandre.daoud@kcl.ac.uk
Tutorial Group: 02_JT
Tutorial Website: http://p-adic.com/teaching/ccm224_1819

2 Handing in Sheet 1

I will mark your answers to the following questions once you hand them in next week:

- Q1 (3), Q2, Q4, Q5

The rest (except 6) we will have a look at today in class.

3 A practice Linear Diophantine Equation

We will have a look at the following Exercise today (as practice for Exercise 5):
Exercise. Consider the linear Diophantine equation

$$
28 x+49 y=14
$$

State whether or not this equation has an integer solution $(x, y) \in \mathbb{Z}^{2}$. If not, state a reason for why. If so then find a closed form for all its integer solutions.

Solution. Theorem 1.13 from lectures tells us that this equation has integer solutions if and only 14 is a multiple of $\operatorname{gcd}(28,49)$. Staring at these numbers hard enough, we realise that $\operatorname{gcd}(28,49)=7$ so indeed this equation has integer solutions.

Theorem 1.13 also tells us how we should find a closed form for these solutions. We must first apply the Euclidean algorithm forwards then backwards to 28 and 49 in order to find two integers u and v such that

$$
28 u+49 v=7
$$

So let's do that:

$$
\begin{aligned}
& 49=1 * 28+21 \\
& 28=1 * 21+7 \\
& 21=3 * 7+0
\end{aligned}
$$

Now reversing the algorithm gives

$$
\begin{aligned}
7 & =28-1 * 21 \\
7 & =28-1 *(49-1 * 28) \\
7 & =28-1 * 49+1 * 28 \\
7 & =2 * 28-1 * 49
\end{aligned}
$$

So $u=2$ and $v=-1$. Hence the solutions to the equation are given by $\left(x_{n}, y_{n}\right)_{n \in \mathbb{Z}}$ where

$$
\begin{array}{r}
x_{n}=\frac{14}{7}(2)+\frac{49}{7} n \\
x_{n}=4+7 n \\
y_{n}=\frac{14}{7}(-1)-\frac{28}{7} n \\
y_{n}=-2-4 n
\end{array}
$$

and we are done! (Make sure to check that these solutions indeed work!)

4 Detailed solution to Question 3

Exercise. Let $a>b>1$ be integers.

1. Consider the first two steps of the Euclidean algorithm for computing $\operatorname{gcd}(a, b)$:

$$
\begin{aligned}
a & =q_{1} b+r_{1} \\
b & =q_{2} r_{1}+r_{2}
\end{aligned}
$$

Show that $r_{2}<\frac{b}{2}$.
2. Let $\lambda(a, b)$ be the number of steps taken by the Euclidean algorithm for computing $\operatorname{gcd}(a, b)$ - more precisely, we let $\lambda(a, b)=n$ where r_{n} is the first zero remainder in the Euclidean algorithm. Show that $\lambda(a, b) \leq\left\lceil\frac{\log b}{\log 2}\right\rceil$.
Solution. We shall prove Part 1 and the link between Part 1 and Part 2 via the following claim:
Claim. Let $n \in \mathbb{N}$ and denote by r_{n} the $n^{t h}$ remainder given by the Euclidean algorithm. Then

$$
r_{2 n}<\frac{b}{2^{n}}
$$

Proof. We prove the claim by induction on n. First assume that $n=1$. We need to show that $r_{2}<\frac{b}{2}$. By Theorem 1.2 in the notes, we know that $r_{2}<r_{1}$. Hence if $r_{1} \leq \frac{b}{2}$ then we are done. So let's assume that $r_{1}>\frac{b}{2}$. Then

$$
\begin{aligned}
r_{2} & =b-q_{2} r_{1} \\
& <b-\frac{b}{2} \\
& <\frac{b}{2}
\end{aligned}
$$

and so the claim is proven when $n=1$. Now assume, given an arbitrary $n \in \mathbb{N}$, we have that $r_{2 n}<\frac{b}{2^{n}}$. We need to show that $r_{2(n+1)}<\frac{b}{2^{n+1}}$. As before, Theorem 1.2 tells us that $r_{2 n+2}<r_{2 n+1}$ so if $r_{2 n+1} \leq \frac{b}{2^{n+1}}$ then we are done. If not then $r_{2 n+1}>\frac{b}{2^{n+1}}$. By the induction hypothesis we know that $r_{2 n}<\frac{b}{2^{n}}$. Putting it all together, we get

$$
\begin{aligned}
r_{2(n+1)}=r_{2 n+2} & =r_{2 n}-q_{2 n+2} r_{2 n+1} \\
& <\frac{b}{2^{n}}-\frac{b}{2^{n+1}} \\
& <\frac{b}{2^{n+1}}
\end{aligned}
$$

which proves the claim.
We are now in a position to finish the solution to Part 2. Let $n=\left\lceil\frac{\log b}{\log 2}\right\rceil$. Then $n \geq \frac{\log b}{\log 2}$. Doing some algebra, we find that $2^{n} \geq b$. But by the claim, we know that $r_{2 n}<\frac{b}{2^{n}}$ and so

$$
r_{2 n}<\frac{b}{2^{n}} \leq 1
$$

Now, Theorem 1.2 says that $r_{2 n} \geq 0$ so, necessarily, $r_{2 n}=0$. We can thus be assured that after at most $2 n$ steps, the Euclidean algorithm is guaranteed to have terminated. In other words, $\lambda(a, b)$ can be no larger than $2 n=2\left\lceil\frac{\log b}{\log 2}\right\rceil$.

