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1 Introduction

Please hand in the solutions for the following exercises on Sheet 6 next week: Q1(a)(b)(c)(d), Q3, Q4(c)(d),
Q7(c), Q8.

2 Comments on solutions to Sheet 5

2.1 Questin 3

Most people wrote a variation of the following proof:

Proof. Fix g, h ∈ G. Then

g2h = eh = h = he = hg2

so G is abelian.

The issue here is that this only shows that squares in G commute with all other elements. We need to
show that all elements of G commute with all other elements of G. In other words, we need to show that
for all g, h ∈ G we have gh = hg. Here is the full solution:

Proof. Fix g, h ∈ G. We need to show that gh = hg. First observe that we have:

(gh)−1(gh)−1 = ((gh)2)−1 = e−1 = e

Now, starting with

(gh)(gh)−1 = e

we may multiply on the right by (gh)−1 to get

(gh)(gh)−1(gh)−1 = (gh)−1

which simplifies down to

gh = h−1g−1

But note that since g2 = e and h2 = e, we must have that g = g−1 and h = h−1 so that gh = hg as required.

2.2 Question 5

The issue with this question was mostly forgetting what the precise definition of order is. Note that I marked
some people ’wrong’ even if part of the question was correctly answered as the important part wasn’t really
addressed. Let’s recall the definition of the order of an element:

Definition. Let G be a group and g ∈ G an element. We say that g has finite order if there exists n ∈ N
such that gn = e. If o ∈ N is the least natural number such that go = e the order of g. If g does not have
finite order then we say that g has infinite order.

Now, the first mistake people made in this question was forgetting the case of infinite order. If g has
infinite order then one also needs to prove that g−1 also has infinite order.

The second mistake that people made was writing the following ”proof” (or a variation thereof):
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Proof. Suppose that g ∈ G has order n. Then

(g−1)n = (gn)−1 = e−1 = e

so g−1 has order n.

The issue here is that we have not shown that n is the least positive integer such that (g−1)n = e. At
this stage it is not yet clear that there doesn’t exist another m ∈ N such that m ≤ n and (g−1)m = e. Let
us now give a full solution to the problem:

Proof. Assume that g has infinite order. Suppose that g−1 has finite order. Then we may choose n ∈ N
such that (g−1)n = e. But then

e = (g−1)n = (gn)−1

By taking inverses on both sides, we see that gn = e as well. But this contradicts the assumption that g
has infinite order so we must have that g−1 has infinite order as well.

Now assume that g has finite order, say n ∈ N so that gn = e and n is the least such positive integer.
First observe that we have

(g−1)n = (gn)−1 = e

so we must necessarily have that the order of g−1 divides n. Suppose, for a contradiction, that the order of
g−1, say m, is strictly smaller than n. We then have that

gm = (g−1)−m = ((g−1)m)−1 = e−1 = e

But this contradicts the fact that n is the order of g as we have found m < n such that gm = n. We must
therefore have that n is the smallest positive integer such that (g−1)n = e and is thus the order of g−1.
Hence g and g−1 have the same order.
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