Introduction to Algebra Tutorial Sheet 5 Comments Handout

27/11/18

1 Introduction

Please hand in the solutions for the following exercises on Sheet 6 next week: Q1(a)(b)(c)(d), Q3, Q4(c)(d), Q7(c), Q8.

2 Comments on solutions to Sheet 5

2.1 Questin 3

Most people wrote a variation of the following proof:
Proof. Fix $g, h \in G$. Then

$$
g^{2} h=e h=h=h e=h g^{2}
$$

so G is abelian.
The issue here is that this only shows that squares in G commute with all other elements. We need to show that all elements of G commute with all other elements of G. In other words, we need to show that for all $g, h \in G$ we have $g h=h g$. Here is the full solution:

Proof. Fix $g, h \in G$. We need to show that $g h=h g$. First observe that we have:

$$
(g h)^{-1}(g h)^{-1}=\left((g h)^{2}\right)^{-1}=e^{-1}=e
$$

Now, starting with

$$
(g h)(g h)^{-1}=e
$$

we may multiply on the right by $(g h)^{-1}$ to get

$$
(g h)(g h)^{-1}(g h)^{-1}=(g h)^{-1}
$$

which simplifies down to

$$
g h=h^{-1} g^{-1}
$$

But note that since $g^{2}=e$ and $h^{2}=e$, we must have that $g=g^{-1}$ and $h=h^{-1}$ so that $g h=h g$ as required.

2.2 Question 5

The issue with this question was mostly forgetting what the precise definition of order is. Note that I marked some people 'wrong' even if part of the question was correctly answered as the important part wasn't really addressed. Let's recall the definition of the order of an element:
Definition. Let G be a group and $g \in G$ an element. We say that g has finite order if there exists $n \in \mathbb{N}$ such that $g^{n}=e$. If $o \in \mathbb{N}$ is the least natural number such that $g^{o}=e$ the order of g. If g does not have finite order then we say that g has infinite order.

Now, the first mistake people made in this question was forgetting the case of infinite order. If g has infinite order then one also needs to prove that g^{-1} also has infinite order.

The second mistake that people made was writing the following "proof" (or a variation thereof):

Proof. Suppose that $g \in G$ has order n. Then

$$
\left(g^{-1}\right)^{n}=\left(g^{n}\right)^{-1}=e^{-1}=e
$$

so g^{-1} has order n.
The issue here is that we have not shown that n is the least positive integer such that $\left(g^{-1}\right)^{n}=e$. At this stage it is not yet clear that there doesn't exist another $m \in \mathbb{N}$ such that $m \leq n$ and $\left(g^{-1}\right)^{m}=e$. Let us now give a full solution to the problem:

Proof. Assume that g has infinite order. Suppose that g^{-1} has finite order. Then we may choose $n \in \mathbb{N}$ such that $\left(g^{-1}\right)^{n}=e$. But then

$$
e=\left(g^{-1}\right)^{n}=\left(g^{n}\right)^{-1}
$$

By taking inverses on both sides, we see that $g^{n}=e$ as well. But this contradicts the assumption that g has infinite order so we must have that g^{-1} has infinite order as well.

Now assume that g has finite order, say $n \in \mathbb{N}$ so that $g^{n}=e$ and n is the least such positive integer. First observe that we have

$$
\left(g^{-1}\right)^{n}=\left(g^{n}\right)^{-1}=e
$$

so we must necessarily have that the order of g^{-1} divides n. Suppose, for a contradiction, that the order of g^{-1}, say m, is strictly smaller than n. We then have that

$$
g^{m}=\left(g^{-1}\right)^{-m}=\left(\left(g^{-1}\right)^{m}\right)^{-1}=e^{-1}=e
$$

But this contradicts the fact that n is the order of g as we have found $m<n$ such that $g^{m}=n$. We must therefore have that n is the smallest positive integer such that $\left(g^{-1}\right)^{n}=e$ and is thus the order of g^{-1}. Hence g and g^{-1} have the same order.

