Introduction to Algebra Tutorial Week 3 Handout

$$
02 / 10 / 17
$$

1 Introduction

Please hand in the solutions for the following exercises next time: Q1, Q2, Q3, Q4(b)(c).

2 A practice Linear Diophantine Equation

We will have a look at the following Exercise today (as practice for Exercise 5):
Exercise. Consider the linear Diophantine equation

$$
28 x+49 y=14
$$

State whether or not this equation has an integer solution $(x, y) \in \mathbb{Z}^{2}$. If not, state a reason for why. If so then find a closed form for all its integer solutions.

Solution. Theorem 2.4.1 from lectures tells us that this equation has integer solutions if and only 14 is a multiple of $\operatorname{gcd}(28,49)$. Staring at these numbers hard enough, we realise that $\operatorname{gcd}(28,49)=7$ so indeed this equation has integer solutions.

Theorem 2.4.5 tells us how we should find a closed form for these solutions. We must first apply the Euclidean algorithm forwards then backwards to 28 and 49 in order to find two integers u and v such that

$$
28 u+49 v=7
$$

So let's do that:

$$
\begin{aligned}
& 49=1 * 28+21 \\
& 28=1 * 21+7 \\
& 21=3 * 7+0
\end{aligned}
$$

Now reversing the algorithm gives

$$
\begin{aligned}
7 & =28-1 * 21 \\
7 & =28-1 *(49-1 * 28) \\
7 & =28-1 * 49+1 * 28 \\
7 & =2 * 28-1 * 49
\end{aligned}
$$

So $u=2$ and $v=-1$. Hence the solutions to the equation are given by $\left(x_{n}, y_{n}\right)_{n \in \mathbb{Z}}$ where

$$
\begin{array}{r}
x_{n}=\frac{14}{7}(2)+\frac{49}{7} n \\
x_{n}=4+7 n \\
y_{n}=\frac{14}{7}(-1)-\frac{28}{7} n \\
y_{n}=-2-4 n
\end{array}
$$

and we are done! (Make sure to check that these solutions indeed work!)

