Numbers and Functions Tutorial Week 13 (apparently it could really be Week 8 , who actually knows at this point tbh) Handout

$$
13 / 11 / 17
$$

1 A correction from last time

When doing Question 8 on Sheet 7 last time, I claimed that $\log 2>1$ as can be found in the solutions on KEATs. Someone asked me a question about why this is true and I said something nonsensical without realising that the statement $\log 2>1$ is incorrect (under the assumption that \log is the logarithm with base $e)$. The correct statement is that $\log 3>1$. The rest of the proof then holds fine once you replace every other occurence of 2 with 3 .

2 Comments on Tutorial Answers (Sheet 7)

2.1 General Comments

- Be careful when you write out a statement that you intend to prove. Make sure to always write before it something like "We claim that". If you simply write a mathematical statement out then the implication is that statement is true.

2.2 Question 1

Throughout this question, it is important to make sure that the n_{0} that you claim works is actually welldefined. By this I mean the following

1. You need to ensure that the algebraic equation defining your n_{0} makes sense for all values of ε. Indeed, consider the following n_{0} for Question 1.f):

$$
n_{0}=\left\lceil\sqrt{\frac{4}{\varepsilon^{2}}-1}\right\rceil
$$

What happens if $4 / \varepsilon^{2}-1<0$? Well, the square root is undefined for negative numbers so we certainly can't do that. Thankfully, in this question we can modify the algebraic manipulations to remove mention of the 1 and it all follows through (see the solutions on KEATs for more information)
2. You need to ensure that your n_{0} is actually an element of \mathbb{N}. For example, consider the following n_{0} for Question 1.c):

$$
n_{0}=\left\lceil\log _{5}\left(\frac{2}{\varepsilon}\right)\right]+1
$$

What happens when $2 / \varepsilon<1$? Well in this case, $\log _{5}(2 / \varepsilon)$ is negative and so n_{0} won't be an element of \mathbb{N}. We can remedy this by just taking

$$
n_{0}=\max \left\{1,\left[\log _{5}\left(\frac{2}{\varepsilon}\right)\right]+1\right\}
$$

This works since if indeed $\log _{5}(2 / \varepsilon)$ is negative then any n_{0} works and we may as well just take 1 in that case.

2.3 Question 3,4,5,6,7

There were two main issues I saw with answers for these questions. The first is that some people were choosing an ε instead of fixing one. Some people managed to cleverly word their proofs to ensure that they were correct. However, the definition of convergence requires you to fix ε (i.e it cannot be chosen) and then exhibit a working n_{0}. I will write out the solution to Question 3 in more detail here so you can see what I mean.

Since $s_{n} \rightarrow l$, we know that

$$
\begin{equation*}
\forall \varepsilon>0, \exists n_{0}(\varepsilon) \in \mathbb{N} \text { such that } \forall n \geq n_{0}(\varepsilon) \text { we have }\left|s_{n}-l\right|<\varepsilon \tag{1}
\end{equation*}
$$

We want to prove that

$$
\forall \varepsilon>0, \exists m_{0}(\varepsilon) \in \mathbb{N} \text { such that } \forall n \geq n_{0}(\varepsilon) \text { we have }\left|t_{n}-2 l\right|<\varepsilon
$$

To this end, fix $\varepsilon>0$. By Statement 1, we know that there exists $n_{0}(\varepsilon / 2)$ such that for all $n \geq n_{0}(\varepsilon / 2)$ we have that $\left|s_{n}-l\right|<\varepsilon / 2$. Then

$$
\left|t_{n}-2 l\right|=\left|2 s_{n}-2 l\right|=2\left|s_{n}-l\right|<2 \cdot \frac{\varepsilon}{2}=\varepsilon
$$

We can thus take $m_{0}(\varepsilon)=n_{0}(\varepsilon / 2)$.
The other issue I saw that people were not being very formal. Remember, every proof of convergence should pick out a specific $n_{0}(\varepsilon) \in \mathbb{N}$ to make sure that the sequence convergences.

Finally, another issue I saw was that some people used the Algebra of Limits to prove that the sequences converged. Most people did so successfully but the question stipulated that you can't use them \odot

