Numbers and Functions Tutorial Week 12 Handout

$$
13 / 11 / 17
$$

1 Comments on Tutorial Answers

1.1 General comments

- Don't use clsoed brackets on ∞ ! Closed brackets means the pbject in the interval is intended to be an element of the set. But ∞ isn't a number so it is always written with a round bracket:

$$
(-\infty,-1) \text { IS CORRECT, NOT }[-\infty,-1)
$$

1.2 Question 1

First of all, there is a typo in the solutions on KEATS. The negation should read:

$$
\exists \delta>0 \text { such that } \forall m \in \mathbb{N} \quad \exists n \geq m \text { such that }-\delta \geq \frac{(-1)^{n}}{n} \text { or } \frac{(-1)^{n}}{n} \geq \delta
$$

I'm still seeing some people mixing up when they should negate inequalities. The golden rule is as follows.

If an inequality comes immediately after (attached to) a quantifier (\forall or \exists), it stays the same. If it does not then it gets negated.

So in the example above, the negation of $\forall \delta>0$ is $\exists \delta>0$; however the negation of $-\delta<\frac{(-1)^{n}}{n}$ is $-\delta \geq \frac{(-1)^{n}}{n}$.

Another point I want to make is to make sure you change the English around when negating so that your negation makes sense grammatically. This isn't a mathematical thing but rather a point about writing mathematical prose. When someone is reading your math, it makes it much easier for them to decipher the meaning when the English flows nicely.

1.3 Question 2

Some people had forgotten the closed brackets on the ends of the intervals. For example in 2.a), $S_{-}=(-\infty, 1]$ since 1 is a lower bound for this set.

1.4 Question 3

There was some confusion as to what exactly we are doing when we are proving that for all $\varepsilon>0$ there exists $x \in S$ such that $x<m+\varepsilon$ where $m=\inf S$. Let me give you an intuitive viewpoint for this (for sup just do the mirror image of the argument).

Fix a $\varepsilon>0$. Let's call ε a pertubation. If $m=\inf S$ then the statement

$$
\exists x \in S \text { such that } x<m+\varepsilon
$$

is saying that, no matter how small you perturb m by with your pertubation ε, you are always guaranteed that $m+\varepsilon$ will land in S (or will land in the set of uppwer bounds of S). So you will always be able to pick an $x \in S$ so that you can squeeze x between m and $m+\varepsilon$. Since I don't have much time to typset a picture for you, I will give you the picture in class and you can fill it in below:

