Numbers and Functions Tutorial Week 11 (apparently...I thought it was Week 6) Handout

$$
06 / 11 / 17
$$

1 Comments on Tutorial Answers

1.1 General Comments

- I am still seeing answers that look like this:

$$
x<-7 \cup x>3
$$

Remember $-\cup$ and \cap are operations on sets. $x<-7$ and $x>3$ are not sets, they are statements. They can be made into sets as follows:

$$
\begin{aligned}
x<-7 & \Longrightarrow\{x \in \mathbb{R} \mid-\infty<x<-7\} \\
x>3 & \Longrightarrow\{x \in \mathbb{R} \mid 3>x>\infty\}
\end{aligned}
$$

- When using set-builder notation, make sure to write which set the elements you are considering originate from. For example, write

$$
\{x \in \mathbb{R} \mid x>0\}
$$

instead of

$$
\{x \mid x>0\}
$$

- Remember, round brackets are for intervals of real numbers:

$$
(2,4)=\{x \in \mathbb{R} \mid 2<x<4\}
$$

and curly brackets are to denote sets:

$$
\{2,4\}=\text { the set containing only the elements } 2 \text { and } 4
$$

1.2 Question 1

Note that at the beginning of this question, it is stated that we are assuming $n \in \mathbb{R}$ is greater than 0 .
c) e) f) A common slip-up in these questions was to use $\log _{1 / 2}(x)$ but not take into consideration how a base smaller than 1 affects the properties of the logarithm. In fact, it is common to take the definition

$$
\log _{1 / n}(x)=-\log _{n}(x)
$$

Try plotting $\log _{1 / 2}(x)$ and $\log _{2}(x)$ with WolframAlpha to see the difference graphically.

1.3 Question 2

When dealing with equations with an absolute value (a.k.a modulus) you should consider the cases where the contents of the absolute value are both positive and negative. For example

$$
\begin{aligned}
|x+2|>5 & \Longleftrightarrow(x+2>5) \text { or }(-(x+2)>5) \\
& \Longleftrightarrow(x+2>5) \text { or }(-(x+2)>5) \\
& \Longleftrightarrow(x>3) \text { or }(-x-2>5) \\
& \Longleftrightarrow(x>3) \text { or }(-x>7) \\
& \Longleftrightarrow(x>3) \text { or }(x<-7) \\
& \Longleftrightarrow x \in(3, \infty) \cup(-\infty,-7)
\end{aligned}
$$

2 Question 3

e) A common mistake here was to write $S_{+}=[1 / 2, \infty)$. Note that $1 / 2$ is not an upper bound for S. Indeed, given large enough even n we have

$$
(-1)^{n}-\frac{1}{n}=1-\frac{1}{n}>\frac{1}{2}
$$

In fact, any even $n>2$ works. This set has no maximum but its supremum is indeed 1. Hence $S_{+}=[1, \infty)$

