Numbers and Functions Tutorial Week 2 Handout

02/10/17

1 Introduction

Tutor Name: Alexandre (Alex) Daoud Tutorial Group: 04_JT Tutorial Website: http://www.p-adic.com/teaching/ccm115_1718 Slack Chat: https://alextutorials.slack.com

My notes on *Basic Set Theory* and *Real Analysis* may be helpful for this course - they can be found on my site http://www.p-adic.com.

2 Notation

2.1 Set Theoretic Symbols

An alternative to the 'subset of' symbol \subset is \subseteq which helps in reducing ambiguity. You can think of this as an equivalent of \leq : $A \subseteq B$ means that A is either a **proper** subset of B or is equal to B. In this convention, we use \subsetneq to denote proper inclusion: $A \subsetneq B$ means that A is a proper subset of B.

2.2 Logical Symbols

 \exists ! is sometimes used to mean "there exists a **unique**..."

3 Set Theory

3.1 Sets

The set declaration notation in the following example

$$A = \{ n \in \mathbb{N} \mid n \ge 0 \}$$

is often referred to as **set-builder notation** with the statement after the '|' or ':' being called the **entrance** requirement or entry condition.

The convention on whether or not \mathbb{N} contains 0 is not widely accepted. Most pure mathematicians agree that \mathbb{N} contains 0 since that is what most constructions of \mathbb{N} yield.

3.2 Intervals

For those of you coming from the French system (or have experience in it), you may recognise]a, b[for open intervals. This convention is not used very much, if at all, in the English system.