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Throughout this document, we shall fix a prime p. Unless otherwise stated, K shall refer
to a number field. If p is a prime of K, we shall denote by Kp the completion of K at p.
When p is non-archimedean, we denote by OK,p its ring of integers, UK,q for its unit group

and U
(n)
K,p for the nth unit group of OK,p, n > 0. By vp we shall mean the p-adic valuation

on K and Kp and similarly for the p-adic absolute value | · |p. By FKp , we shall mean the
residue field of Kp. When it is evident which number field we are working in, we shall drop
K from the subscript.

1 Basic Properties of Zp-extensions

Definition 1.1. Let K∞/K be a Galois extension. We say that K∞/K is a Zp-extension
if Gal(K∞/K) ∼= Zp as topological groups.

Proposition 1.2. Let K∞/K be a Zp-extension. Then for each n ∈ N is a unique inter-
mediate field K ⊆ Kn ⊆ K∞ such that [Kn : K] = pn. Moreover, these are exactly all
intermediate fields of K∞/K.

Proof. By the Fundamental Theorem of Galois Theory, the intermediate extensions of L of
K∞/K are in one-to-one correspondence with the closed subgroups CL of Zp. Moreover,
[L : K] = [Zp : CL]. Hence it suffices to determine the closed subgroups of Zp. Let
S ⊆ Zp be a non-zero closed subgroup. Fix x ∈ S such that vp(x) is minimal. Clearly,
xZ ⊆ S. But S is closed and so xZp ⊆ S. By the choice of x, we necessarily then have that
S = xZp = pnZp.

Proposition 1.3. Let K∞/K be a Zp-extension and q a prime of K not lying over p. Then
K∞/K is unramified at q.

Proof. Let Iq ⊆ Gal(K∞/K) denote the inertia group for q. Let q∞ be a prime of K∞
lying over q and denote by K∞ the completion of K∞ at q∞. Since we have a continuous
surjection

π : Gal(K∞/Kp) � Gal(FK∞
/FKq)

given by the reduction map and Iq = π−1({ 1 }), it follows that Iq is closed in Zp. Hence
Iq = 0 or Iq = pnZp for some n ≥ 1. In the former case, we are done so assume that there
exists some n ≥ 1 such that Iq = pnZp. Then Iq is infinite. Since |Iq| = 1 or 2 when q is
archimedean, we must have that q is non-archimedean.

By Local Class Field Theory, the local Artin map induces a continuous surjective homo-
morphism

[−, K∞/Kq] : UK,q −� Iq

Let q be the rational prime lying under q. Then the logarithm map induces a surjective
homomorphism

log : UK,q → OK,q

Since this map has finite kernel A and OK,q is a free Zq-module of rank m = [K : Q], we
then have the isomorphism

UK,q ∼= A× Zmq
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Composing this with the local Artin map gives a continuous surjective homomorphism

A× Zmq −� pnZp

But pnZp is torsion-free as a Zp-module so we in fact have a continuous surjective homo-
morphism Zmq � pnZp. This induces a continuous surjective homomorphism

Zmq −� pnZp/pn+1Zp ∼= Z/pZ

But Zmq has no closed subgroups of index p. Hence Iq = 0 and so K∞/K is unramified
outside p.

Proposition 1.4. Let K∞/K be a Zp-extension and Kn the intermediate fields. Then at
least one prime of K ramifies in K∞ and there exists n ∈ N such that every prime of Kn

which ramifies in K∞/Kn is totally ramified.

Proof. Recall that the Hilbert class field of K is the maximal unramified abelian extension
of K and is of finite degree over K. Since K∞/K is an infinite extension, it follows that at
least one prime of K must ramify in K∞.

By Proposition 1.3, the only possible primes of K that could ramify in K∞ are exactly
those that lie over p. Denote them p1, . . . , pm and let I1, . . . , Im be their corresponding
inertia groups. Then

m⋂
j=1

Ij = pnZp

for some n ≥ 1. Now, the fixed field of pnZp and by the Galois correspondence we have that
Gal(K∞/Kn) ⊆ Ij for all j. It then follows that all the primes above each pj are totally
ramified in K∞/Kn.

Example 1.5. Let K be a number field and and Q an algebraic closure of Q. We can
construct a Zp-extension of K in the following way. Let µp∞ be the group of all p-power roots
of unity in Q. Then K(µp∞)/K is Galois and we have a continuous injective homomorphism

φ : Gal(K(µp∞)/K)→ Z×p

defined in the following way. Given σ ∈ Gal(K(µp∞)/K) and n ≥ 0, there exists a un ∈ Z
such that σ(ζ) = ζun for all ζ ∈ µpn . Such a un is uniquely determined modulo pn and is
coprime to p and so un+1 ≡ un (mod pn). We then set

φ(σ) = lim
n→∞

un

and so Gal(K(µp∞)/K) is isomorphic to an infinite closed subgroup of Z×p . Such a closed sub-
group has finite torsion so, quotienting out by an appropriate subgroup of Gal(K(µp∞)/K)
yields a quotient group isomorphic to Zp. The corresponding fixed field of this subgroup,
denoted K∞, is called the cyclotomic Zp-extension of K. Note that K∞ = KQ∞

2 Determining the amount of Zp-extensions

Let K be a number field of degree n. Let σ1, . . . , σn be the n distinct embeddings of K
into an algebraic closure of K. Let r1 denote the number of real embeddings and r2 the
number of pairs of complex embeddings. We are interested in how many Zp-extensions of
K there are.
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Proposition 2.1. Let p denote a finite prime of K lying above p. Define

U =
∏
p/p

U
(0)
p , U (1) =

∏
p/p

U
(1)
p

and consider the diagonal embedding map

i : O×K → U

ε 7→ (ε, . . . , ε)

If E1 = i−1(U (1)) then E1 is a Z-module of rank r1 + r2− 1. Moreover, E1 (as a subspace of
U (1)) is a Zp-module of rank no more than r1 + r2 − 1.

Proof. Recall that we have an isomorphism

U
(0)
p �

U
(1)
p

∼= F×p

From which it follows that E1 has finite index in O×K . By Dirichlet’s Unit Theorem, O×K is a
Z-module of rank r1 + r2 − 1 whence so is E1. Now, for large enough n, the logarithm map
induces an isomorphism of topological groups

logp : U
(n)
p → pnOp

so that U
(n)
p is a free Zp-module of rank [Kp : Qp]. We also have, for each n ≥ 1, an

isomorphism

U
(n)
p �

U
(n+1)
p

∼= Fp

Then U (1) is a free Zp-module of rank [K : Q] =
∑

p/p[Kp : Qp]. This then implies that E1 is

a Zp-module. Since E1 has Z-rank r1 +r2−1, E1 can have Zp-rank no larger than r1 +r2−1
as claimed.

Conjecture 2.2 (Leopoldt). E1 is a finitely generated Zp-module of rank r1 + r2 − 1.

Remark. Leopoldt’s conjecture is known to be true in the case that K is an abelian exten-
sion.

Let IK be the idèle group of K and CK = IK/K× the idèle class group. Let DK be the
connected component of the identity of IK .

Lemma 2.3. We have an isomorphism

DK ∼= (R×≥0)r1 × (C×)r2

Proof. Recall that non-archimedean fields are totally disconnected and therefore so are their
unit groups. Since the cartesian product of totally disconnected spaces is totally discon-
nected, it follows that DK is topologically isomorphic to the connected components of the
archimidean completions of K.

Lemma 2.4. Let F be a local field of characteristic 0 with residue field F such that char(F) =

p. Then UF ∼= U
(1)
F ⊕ F×p .
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Proof. Recall that we have an isomorphism

UF�
U

(1)
F

∼= F×

so that we have an exact sequence

0 U
(1)
F UF F 0

The Teichmüller lift provides a right splitting of this exact sequence so the Splitting Lemma
implies the Lemma.

Theorem 2.5. Suppose that rankZp(E1) = r1 + r2 − 1 − δ. Then there exist r2 + 1 + δ
independent Zp-extensions of K. In particular, if K ′ is the compositum of all Zp-extensions
of K then Gal(K ′/K) ∼= Zr2+1+δ

p .

Proof. Throughout this proof, we shall use the placeholder A to mean a certain finite group
whose exact structure can be ignored. Let L be the maximal abelian extension of K which
is unramified outside of p. By Proposition 1.3, K ′ ⊆ L. By class field theory, there exists a
closed subgroup K× ⊆ H ⊆ IK such that the global Artin map induces an isomorphism

[−, L/K] : CK�H ∼= Gal(L/K)

and such that CK/H is totally disconnected. Given an archimedean prime q of K, let
Uq = K×q . Furthermore, define the groups

U ′ =
∏
p/p

Up, U ′′ =
∏
q - p

Uq, U = U ′ × U ′′

We will identify these groups with their images in IK . Also note that U is an open subgroup
of IK . Now, since L/K is unramified outside of p, U ′′ ⊆ H. By Lemma we have that
DK ⊆ U ′′ ⊆ H. But L is the maximal such extension so, necessarily, H = K×U ′′.

Now define J ′ = CK/H = Gal(L/K) and

J ′′ = K×U/H = U ′H/H = U ′/(U ′ ∩H)

Letting U (1) =
∏

p/p U
(1)
K,p as before, Lemma 2.4 implies that U ′ = U (1) × A. Then

J ′′ ∼= A× U (1)/(U (1) ∩H)

Now let ψ : E1 → U (1) denote the embedding of E1 into IK . Note that ψ(ε)q = 1 when q - p.
We first require the following Lemma:

Lemma 2.6. U1 ∩H = U1 ∩K×U ′′ = ψ(E1)

Proof. Fix ε ∈ E1. Observe that

ψ(ε) = ε

(
ψ(ε)

ε

)
∈ K×U ′′

since (ψ(ε)/ε)p = 1 when p/p. By definition, ψ(ε) ∈ U (1). Passing to the closure, we get
one inclusion.
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To prove the other inclusion, denote U (n) =
∏

p/p U
(n)
p . Then since IK is a topological

group, we have that

K×U ′′ =
⋂
n≥1

K×U ′′U (n)

Similarly, we have

ψ(E1) =
⋂
n≥1

ψ(E1)U (n)

It thus suffices to show that

U (1) ∩K×U ′′U (n) ⊆ ψ(E1)U (n)

To this end, fix x ∈ K×, u′′ ∈ U ′′ and u ∈ U (n) and suppose that xu′′u ∈ U (1). Then, clearly,
xu′′ ∈ U (1). Now, (u′′)p = 1 for p/p so x ∈ U (1)

p for such primes. Since (U1)q = 1 for q - p
and u′′ is a unit at such primes, it follows that x is a unit everywhere so x ∈ E1 ⊆ O×K . But
then xu′′ ∈ ψ(E1) and so xu′′u ∈ ψ(E1)Un which completes the proof of the Lemma.

We are now in a position to prove the Theorem. As before, U (1) ∼= A× Z[K:Q]
p . Hence

U1/(U1 ∩H) = U1/ψ(E1) ∼= A× Zr1+1+δ
p

so we have a similar isomorphism for J ′′. But

J ′/J ′′ ∼= CK/U ∼= CK

where CK is the finite ideal class group of K. Hence J ′/Zr2+1+δ
p

∼= A. Let N be cardinality
of the finite group A. Then

NZr2+1+δ
p ⊆ NJ ′ ⊆ Zr2+1+δ

p

so that NJ ′ ∼= Zr2+1+δ
p as a Zp-module. Let J ′N be the N -torsion subgroup of J ′. Then we

have isomorphisms

J ′/J ′N
∼= NJ ′ ∼= Zr2+1+δ

p

Now suppose that J ′N has order larger than N . By the Pigeonhole Principle, there would
exist distinct x, y ∈ J ′N such that [x] = [y]. But the difference [x] − [y] is also killed by
N and so Zr2+1+δ

p would have non-trivial N -torsion which it doesn’t. Hence |J ′N | ≤ N . In
particular, it has finite cardinality so its fixed field is necessarily K ′ and the Theorem is
proven.

Corollary 2.7. Let K(1) be the Hilbert class field of K and L the maximal abelian extension
of K unramified outside of p. Then

Gal(L/K(1)) ∼=

∏
p/p

UK,p

/O×K
Proof. In the notation of the previous proof, J ′ ∼= Gal(L/K). The closed subgroup J ′′

corresponds to K(1) by class field theory and so Gal(L/K(1)) ∼= J ′′ ∼= U ′/(U ′ ∩ H). The

same proof as for Lemma 2.6 shows that U ′ ∩H = ψ(O×K) as desired.
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3 Λ-modules

Let K be a finite extension of Qp, O its ring of integers and π a uniformiser generating
the unique maximal ideal p of O.

Proposition 3.1 (Division Algorithm). Let f, g ∈ O[[T ]] with f =
∑∞

i=0 aiT
i. Suppose that

ai ∈ p for 0 ≤ i ≤ n − 1 but an ∈ O×. Then there exist unique q ∈ O[[T ]] and r ∈ O[T ]
such that g = qf + r and deg(r) ≤ n− 1.

Proof. We first prove uniqueness which amounts to showing that if qf+r = 0 then q = r = 0.
Suppose that q, r 6= 0. Without loss of generality, we may assume that either π - r or π - q.
Reducing modulo π shows that, necessarily, π|r so we have that π - q but π | fq. But π - f
so we must have that π | q which is a contradiction.

To prove the existence of q and r, define the O-linear shift operator

τ = τn : O[[T ]]→ O[[T ]]
∞∑
i=0

biT
i 7→

∞∑
i=n

biT
i−n

which satisfies the following two properties

1. τ(T nh(T )) = h(T ) for all h(T ) ∈ O[[T ]]

2. τ(h(T )) = 0 ⇐⇒ h(T ) ∈ O[T ] with deg(h(T )) ≤ n− 1

We can always write

f(T ) = πP (T ) + T nU(T )

where P (T ) ∈ O[T ] has deg(P ) ≤ n − 1 and U(T ) = τ(f(T )). Now, since an ∈ O×, it
follows that U(T ) is a unit in O[[T ]]. Define

q(T ) =
1

U(T )

∞∑
j=0

(−1)jπj
(
τ ◦ P

U

)j
◦ τ(g)

We note that the πj factor ensures that this is a well-defined power series over O. Since

qf = πqP + T nqU

it follows that

τ(qf) = πτ(qP ) + τ(T nqU) = πτ(qP ) + qU

Now,

πτ(qP ) = π

(
τ ◦ P

U

)
◦

(
∞∑
j=0

(−1)jπj
(
τ ◦ P

U

)j
◦ τ(g)

)
= τ(g)− qU

so that

τ(qf) = τ(g)

By the second property of τ it then follows that g = qf + r for some r ∈ O[T ] such that
deg(r) ≤ n− 1.
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Definition 3.2. Let P (T ) = T n + an−1T
n−1 + · · · + a0 ∈ O[T ]. We say that P (T ) is

distinguished if ai ∈ p for 0 ≤ i ≤ n− 1.

Theorem 3.3 (p-adic Weierstrass Preparation). Let f(T ) =
∑∞

i=0 aiT
i ∈ O[[T ]] and suppose

that ai ∈ p for 0 ≤ i ≤ n − 1 but an 6∈ p for some n. Then f can be written uniquely in
the form f(T ) = p(T )U(T ) where U(T ) ∈ O[[T ]] is a unit and P (T ) is a distinguished
polynomial of degree n.

Moreover, if f(T ) ∈ O[[T ]] is non-zero then we may uniquely write

f(T ) = πµP (T )U(T )

with P a distinguished polynomial of degree n, U(T ) ∈ O[[T ]] a unit and µ ≥ 0.

Proof. The second part follows immediately from the first part upon factoring out a large
enough power of π from the coefficients of f(T ).

In order to prove the first statement, let g(T ) = T n. By the division algorithm, there
exist unique q ∈ O[[T ]] and r ∈ O[T ] with deg(r) ≤ n− 1 and

T n = q(T )f(T ) + r(T )

Since

q(T )f(T ) ≡ q(T )(anT
n + o(T n+1)) (mod π)

whence r(T ) ≡ 0 (mod π). Hence P (T ) = T n−r(T ) is a distinguished polynomial of degree
n. Denote by q0 the constant term of q(T ). Comparing coefficients of T n, we see that

q0an ≡ 1 (mod π)

and so q0 ∈ O× whence q(T ) is a unit in O[[T ]]. Define U(T ) = 1/q(T ). Then f(T ) =
P (T )U(T ) as desired.

To prove uniqueness, note that any distinguished polynomial of degree n can be written
as P (T ) = T n − r(T ). Transforming the equation f(T ) = P (T )U(T ) back to

T n = U(T )−1f(T ) + r(T )

allows us to apply the uniqueness statement of the division algorithm to see that U(T ) and
r(T ) are unique.

Corollary 3.4. Let Cp be the complex p-adics1 and f(T ) ∈ O[[T ]] non-zero. Then there are
only finitely many x ∈ Cp such that |x|p < 1 and f(x) = 0.

Proof. Fix x ∈ Cp such that |x|p < 1 and f(x) = 0. By the p-adic Weierstrass Preparation
Theorem we can write f(T ) = πµP (T )U(T ) for some µ ≥ 0, P (T ) distinguished and U(T ) ∈
O[[T ]]. But U(T ) is a unit so U(x) 6= 0 and so, necessarily, P (x) = 0. Hence there can only
be finitely many such x.

Proposition 3.5. Let P (T ) ∈ O[T ] be distinguished and g(T ) ∈ O[T ] arbitrary. If
g(T )/p(T ) ∈ O[[T ]] then, in fact, g(T )/P (T ) ∈ O[T ].

1Recall that the complex p-adics are the completion of the algebraic closure of Qp which are themselves
algebraically closed.
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Proof. Write g(T ) = f(T )P (T ) for some f(T ) ∈ O[[T ]]. Let x ∈ Cp be a root of P (T ).
Then

0 = P (x) = xn + z(x)π

for some polynomial z(x) ∈ O[T ]. Hence |x|p < 1 whence f(x) converges so that g(x) = 0.
Now, dividing by T − x and expanding the ring as necessary we can continue this process
to see that P (T ) divides g(T ) as polynomials and so f(T ) ∈ O[T ].

From now on, let Λ = Zp[[T ]].

Proposition 3.6. Λ is a unique factorisation domain and is Noetherian. It’s irreducible
elements are p and the irreducible distinguished polynomials. The units are precisely the
power series whose constant term is 1.

Proof. Everything follows immediately from the p-adic Weierstrass Theorem except the
Noetherian statement which follows from the formal Hilbert Basis Theorem and the fact
that Zp is Noetherian (it’s a PID).

Lemma 3.7. Let f, g ∈ Λ be coprime. Then (f, g)Λ is of finite index in Λ.

Proof. Fix h ∈ (f, g) of minimal degree. The necessarily h = psH for some s ≥ 0 and either
H = 1 or H a distinguished polynomial. Suppose that H 6= 1. Since f and g are coprime,
we may assume that H does not divide f . By the division algorithm we have

f = Hq + r

for some q and r with deg r < degH = deg h. Hence

psf = hq + psr

Then psr ∈ (f, g) and deg(psr) < deg(h) which contradicts the minimality of deg(h). Hence
H = 1 and h = ps. Without loss of generality, we may assume that f is coprime to p and
is distinguished. Indeed, if this were not the case then we could just use g or divide by a
unit. Since h = ps and f and g are coprime, it follows that (ps, f) ⊆ (f, g). By the division
algorithm, any element of Λ is congruent modulo f to a polynomial of degree less than
deg(f). There are only finitely many such polynomials modulo ps whence (ps, f) has finite
index in Λ. Hence so does (f, g) as claimed.

Lemma 3.8. Let f, g ∈ Λ be coprime. Then

1. The map

φ : Λ/(fg)→ Λ/(f)⊕ Λ/(g)

[h]fg 7→ ([h]f , [h]g)

is an injection with finite cokernel.

2. There exists an injective map

ψ : Λ/(f)⊕ Λ/(g)→ Λ/(fg)

with finite cokernel.
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Proof.

Part 1: Suppose that φ([h]fg) = 0. Then h ≡ 0 (mod f) and h ≡ 0 (mod g) so that f | h
and g | h. But f and g are coprime and Λ is a UFD and so fg | h whence [h] = 0.

To see that this map has finite cokernel, we first observe that by Lemma 3.7 we can
choose finitely many representatives r1, . . . , rn for Λ/(f, g). We claim that

{ ([0]f , [ri]g) | 1 ≤ i ≤ n }

is a set of coset representatives for cokerφ. To this end, fix an equivalence class m ∈ cokerφ.
Suppose that m = ([a]f , [b]g) ∈ Λ/(f) ⊕ Λ/(g). We need to show that there exists some
1 ≤ i ≤ n such that

([a]f , [b]g) ∼ ([0]f , [ri]g) ⇐⇒ ([a]f , [b− ri]g) ∼ 0 ⇐⇒ ([a]f , [b− ri]g) ∈ imφ

Now, a − b ≡ −rk (mod (f, g)) for some 1 ≤ k ≤ n. Hence a − b + rk ∈ (f, g) and so
a− b+ rk = Af +Bg for some A,B ∈ Λ. Define

c = a− Af = b− rk +Bg

Then φ([c]) = ([a]f , [b− rk]g) so taking i = k works.

Part 2: Denote LetM = imφ and N = Λ/(f)⊕Λ/(g). By Part 1, we have that Λ/(fg) ∼= M
and M ⊆ N . Let P ∈ Λ be a distinguished polynomial that is coprime to fg. Since M has
finite index in N , the Pigeohole principle implies that

(P i)(x, y) ≡ (P j)(x, y) (mod M)

for some i < j. Observe that 1 − P j−i ∈ Λ× so the above congruence then implies that
(P i)(x, y) ∈ N . Hence for large enough i, say k, we have that P kN ⊆ M . We claim that
ψ = P k is the desired injection with finite cokernel. Indeed, suppose that ψ(x, y) = 0. Then
f | P kx and g | P ky. But gcd(P k, fg) = 1 and so f | x and g | y whence (x, y) = 0. Hence
ψ is injective. Now, (P k, fg) has finite index in Λ and thus its image has finite index in
Λ/(fg). But (P k, fg) ⊆ imψ which implies that cokerψ is finite.

Proposition 3.9. Let p be a non-zero prime ideal of Λ. Then p is one of (p), (p, T ), or
(P (T )) for any irreducible distinguished polymomial. Moreover, (p, T ) is the unique maximal
ideal of Λ and so Λ is a Noetherian local ring.

Proof. Since Λ is a UFD with irreducibles p, P (T ) and T , it follows that the ideals that
they are generate are prime ideals. Let h ∈ p be of minimal degree. Then by the p-adic
Weierstrass preparation theorem, h = psH for some s ≥ 0 and H either 1 or a distinguished
polynomial. Since p is prime, either p ∈ p or H ∈ p. If 1 6= H then H must be irreducible by
minimality of its degree. Hence in either case, (f) ⊆ p where f is either p or an irreducible
distinguished polynomial. If (f) = p then p is one of the listed prime ideals and we are
done.

Next, suppose that p 6= (f). Then there exists g ∈ p such that f - g. Now, f is irreducible
so, necessarily, f and g are coprime. Then (f, g) has finite index in Λ by Lemma 3.7. But
(f, g) ⊆ p so that p has finite index in λ. Observe that Λ/p is a finite Zp-module and so
pN ∈ p for large enough N . Since p is prime we then have that p ∈ p. Moreover, T i ≡ T j

(mod p) for some i < j. Since 1− T j−i ∈ Λ× it then follows that T i ∈ p whence T ∈ p. We
thus see that (p, T ) ⊆ p. But Λ/(p, T ) ≡ Fp which is a field and so (p, T ) is maximal and
(p, T ) = p.
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Lemma 3.10. Let f ∈ Λ such that f 6∈ Λ×. Then Λ/(f) is infinite.

Proof. If f = 0 then we are done so assume that f 6= 0. We may assume, without loss of
generality, that f = p or f is a distinguished polynomial. If f = p then Λ/(f) ∼= Fp[[T ]]
which is infinite.

If f is a distinguished polynomial, fix g ∈ Λ. By the division algorithm, we can find
unique q ∈ Zp[[T ]] such that g = fq + r. Then g ≡ r (mod (f)). Since r is unique and
depends on g, we see that Λ/(f) has the same cardinalty as Λ. In particular, it is an infinite
subring of Zp[T ].

Definition 3.11. Let M and M ′ be Λ-modules. We say that M and M ′ are pseudo-
isomorphic and write M ∼M ′ if there exists a homomorphism M →M ′ with finite kernel
and cokernel.

Proposition 3.12. Let f, g ∈ Λ be coprime. Then

Λ/(fg) ∼ Λ/(f)⊕ Λ/(g), Λ/(f)⊕ Λ/(g) ∼ Λ/(fg)

Proof. This is a restatement of Lemma .

We aim to prove the following Theorem:

Theorem 3.13. Let M be a finitely generated Λ-module. Then

M ∼ Λr ⊕

(
s⊕
i=1

Λ/(pni)

)
⊕

(
t⊕

j=1

Λ/(fj(T )mj)

)

for some r, s, t, ni,mj ∈ Z and fj irreducible distinguished polynomials.

Suppose M is a finitely generated Λ-module so that we have an exact sequence

Λn M 0
φ

for some n ≥ 1. Then the images of the generators of Λn under φ are generators for M ,
label them u1, . . . , un. Let R = kerφ. Note that the elements of R correspond to relations

λ1u1 + · · ·+ λnun = 0

with λi ∈ Λ. Since Λ is Noetherian, R is finitely generated and so M is a finitely presented
Λ-module. That is to say, we have an exact sequence

Λm Λn M 0R φ

where R is now the so-called presentation matrix of M . We have the following standard row
and column operations which correspond to changing the generators of R and M :

Operation A. We may permute the rows or columns of R.

Operation B. We may add a multiple of a row (respectively column) to another row (re-
spectively column). A special case of this operation is the following. If λ′ = qλ + r then we
can perform the operation

...
...

λ · · · λ′ · · ·
...

...

→


...
...

λ · · · r · · ·
...

...
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Operation C. We may multiply any row or column by an element of Λ×.

Since we are working up to pseudo-isomorphism, we also have the following operations
for which we provide a proof that they change the generators of R:

Operation 1. If R contains a row (λ1, pλ2, . . . , pλn) with p - λ1. Then we may change R
to the matrix R′ whose first row is (λ1, λ2, . . . , λn) and the remaining rows are the rows of
R with the first element multiplied by p: λ1 pλ2 · · ·

α1 α2 · · ·
β1 β2 · · ·

→
 λ1 λ2 · · ·

pα1 α2 · · ·
pβ1 β2 · · ·


As a special case, if λ2 = · · · = λn = 0 then we may multiply α1, β1, · · · by an arbitrary
power of p.

Proof. In R we have the relation

λ1u1 + p(λ2un + · · ·+ λnun) = 0

Define M ′ to be the Λ-module M⊕vΛ where v ∈M is a new generator modulo the relations

(−u1, pv) = 0, (λ2u2 + · · ·+ λnun, λ1v) = 0

Let φ : M → M ′ be the natural map. We claim that φ is a pseudo-isomorphism. Suppose
that φ(m) = 0. Then (m, 0) lies in the module of relations of M ′ and so

(m, 0) = a(−u1, pv) + b(λ2u2 + · · ·+ λnun, λ1v)

for some a, b ∈ Λ. Hence ap = −bλ1. Since p - λ1, it follows that p | b. Similarly, λ1 | a.
Then in the M -component we have

m = − a

λ1

(λ1u1)− a

λ1

p(λ2u2 + · · ·+ λnun)

= − a

λ1

(0) = 0

so φ is injective. Now consider the elements pv and λ1v in M ′. It is clear that these
elements lie in the image of M under φ. Then the ideal (p, λ1) annihilates M ′/φ(M).
M ′/φ(M) therefore has the natural structure of a finitely-generated Λ/(p, λ1)-module. Since
gcd(p, λ1) = 1, the ideal (p, λ1) has finite index in Λ. It then follows that M ′/φ(M) is finite.
Hence φ is a pseudo-isomorphism as claimed.

The module M ′ has generators v, u2, . . . , un and any relation αu1 + · · · + αnun = 0
becomes pα1v + α2u2 + · · · + αnun = 0 so that the first column of the presentation matrix
is multiplied by p. We furthermore have the relation λ1v + λ2u2 + . . . λnun = 0 so the
presentation matrix takes the claimed form.

Operation 2. If all the elements in the first column of R are divisible by pk for some k ≥ 1
and if there is a row (pkλ1, . . . , p

kλn) such that p - λ1 then we may change to the matrix R′

which is the same as R except that (pkλ1, . . . , p
kλn) is replaced by (λ1, . . . , λn):(

pkλ1 pkλ2 · · ·
pkα1 α2 · · ·

)
→
(

λ1 λ2 · · ·
pkα1 α2 · · ·

)

12



Proof. Define M ′ to be the Λ-module M = vΛ where v ∈M is a new generator modulo the
relations

(pku1,−pkv) = 0, (λ2u2 + · · ·+ λn, λ1v) = 0

Let φ : M → M ′ be the natural map. As before, the fact that p - λ1 implies that φ is
injective. The fact that (pk, λ1) annihilates M ′/φ(M) implies that φ has finite cokernel so
that φ is a pseudo-isomorphism. Since we have the relation pk(u1 − v) = 0 in M ′ and the
fact that pk divides every element of the first column of R, it follows that

M ′ = M ′′ ⊕ (u1 − v)Λ

where M ′′ is the Λ-module generated by v, u2, . . . , un and the relations (λ1, . . . , λn) and R.
Observe that, since u1 − v is killed by pk, we have that (u1 − v)Λ = Λ/(pk) which is in the
form given in the Theorem. We are thus free to just work with M ′′ which clearly has R′ as
its presentation matrix.

Operation 3. If R contains a row (pkλ1, . . . , p
kλn) and for some λ with p - λ we have that

(λλ1, . . . , λλn) is also a relation then we may change R to R′ where R′ is the same as R
except that (pkλ1, . . . , p

kλn) is replaced by (λ1, . . . , λn).

Proof. Define the module M ′ = M/(λ1u1 + · · ·+λnun)Λ and let φ : M →M ′ be the natural
surjection. The kernel of φ is clearly annihilated by the ideal (pk, λ) of Λ and so kerφ has
the natural structure of a Λ/(pk, λ)-module. But Λ/(pk, λ) is finite and kerφ is finitely
generated since M is and so kerφ is finite and M is pseudo-isomorphic to M ′.

Definition 3.14. Let M be a finitely generated Λ-module and R its relation matrix. We
call the operations A,B,C, 1, 2, 3 on R admissible.

Given 0 6= f ∈ Λ, let f(T ) = pµP (T )U(T ) be its Weierstrasas factorisation for some
µ ≥ 0, P (T ) distinguished and U(T ) ∈ Λ×. We define the Weierstrass degree of f to be

degw(f) =

{
∞ if µ > 0
degP (T ) if µ = 0

We then define

deg(k)(R) = min degw(a′ij)

for i, j ≥ k where (aij) ranges over all relation matrices obtained from R via admissible
operations which leave the first (k − 1) rows unchanged.

Finally, if R is in the form
λ11 0 0 · · · 0

. . .

0 λr−1,r−1 0 · · · 0
∗ · · · ∗ ∗ · · · ∗
∗ · · · ∗ ∗ · · · ∗

 =

(
Dr−1 0
A B

)

with each λkk distinguished and

deg λkk = degw λkk = deg(k)(R)

for 1 ≤ k ≤ r − 1 then we say that R is in (r − 1)-form.
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Lemma 3.15. Let M be a finitely generated Λ-module with presentation matrix R. Suppose
that R is in (r− 1)-form and B 6= 0. Then R may be transformed via admissible operations
into R′ which is in r-normal form and has the same first (r − 1) diagonal elements as R.

Proof. By the special case of Operation 1, we can assume that for any N we have pN | λi,j
for all i ≥ r and j ≤ r − 1 so that pN | A. Choose an N large enough so that pN - B. By
Operation 2, we may knock off enough powers of p from the matrix formed by A and B so
that p - B. Furthermore, we may assume that B contains an entry λij such that

degw λij = deg(r)(R) <∞

If λij = P (T )U(T ) for some unit U ∈ Λ×, we may simply multiply the jth column by λij
so we can ssume that λij is distinguished. Indeed, the first r − 1 rows have 0 in the jth

column so they do not change. Operation A allows us to assume that λij = λrr. This is
again because of the 0 entries.

By the division algorithm and the special case of B, we may assume that λrj is a poly-
nomial satisfying

deg λrj < deg λrr

when j 6= r and

deg λrj < deg λjj

for j < r. But λrr has minimal Weierstrass degree in B so we must have that p | λrj for
some j > r. By applying Operation 1, we can assume that pN | λrj for some j < r and large
N . Now suppose that λrj 6= 0 for some j > r. Operation 1 allows us to remove the power
of p from λrj, leaving the 0s above it unchanged. Then

degw λrj = deg λrj < deg λrr = degw λrr

which is a contradiction. Hence λjr = 0 for all j > r.
Similarly, suppose that λrj 6= 0 for some j < r. Using Operation 1, we can assume that

p - λrj. But then

degw λrj ≤ deg λrj < deg λjj = degw λjj

Since degw λjj = deg(j)(R), this contradicts the minimality of degw λjj so we must have that
λrj = 0 for all j < r. This proves the claim.

Theorem 3.16. Let M be a finitely generated Λ-module. Then

M ∼ Λr ⊕

(
s⊕
i=1

Λ/(pni)

)
⊕

(
t⊕

j=1

Λ/(fj(T )mj)

)
for some r, s, t, ni,mj ∈ Z and fj irreducible distinguished polynomials.

Proof. Let R be the presentation matrix of M . Then, in the notation of Lemma 3.15, we
have that r = 1. We can repeatedly apply Lemma 3.15 to bring R into the form

λ11 0
. . .

λrr
A 0
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where each λjj is distinguished and deg λjj = deg(j)(R) for j ≤ r. Applying the division
algorithm, we may assume that λij are polynomial and

deg λij < deg λjj

for i 6= j. Now suppose that λij 6= 0 for i 6= j. Since degw λjj is minimal, we must have
that p | λij. We thus have a non-zero relation (λi1, . . . , λir, 0, . . . , 0) divisible by p. Let
λ = λ11 . . . λrr. Then p - λ since the λii are distinguished and(

λ
1

p
λi1, . . . , λ

1

p
λir, 0, . . . , 0

)
is also a relation since λjjuj = 0. Operation 3 allows us to assume that there exists some j
for which p - λij. Hence

degw λij ≤ deg λij < deg λjj = deg(j)(R)

which is a contradiction. Hence λij = 0 for all i, j with i 6= j and so A = 0. Hence in terms
of Λ-modules we have

Λ/(λ11)⊕ · · · ⊕ Λ/(λrr)⊕ Λn−r

Adding in the factors Λ/(pk) from Operation 2 yields the form desired except that the λii
are not necessarily irreducible. But applying Lemma 3 yields the desired result.

4 Iwasawa’s Class Number Formula

Definition 4.1. Let G be a topological group. We say that an element γ ∈ G is a topo-
logical generator of G if the subgroup generated by γ is dense in G.

Example 4.2. Consider the additive group of Zp. Then 1 ∈ Zp is a topological generator
of Zp. Indeed, the subgroup generated by 1 which is dense in Z with respect to the p-adic
topology of Zp

Definition 4.3. Let Γ be a profinite group isomorphic to Zp and γ a topological generator

of Γ. Let Γp
n

= 〈γpn〉 be the unique closed subgroup of index pn in Γ. then Γn = Γ/Γp
n

is a
cyclic group of order pn with generator γ + Γp

n
and we have an isomorphism

Zp[Γn]→ Zp[T ]/((1 + T )p
n − 1)

[γ] 7→ [1 + T ]

Moreover, for 0 ≤ n ≤ m, the natural map Γm → Γn induces a natural map Zp[Γm] →
Zp[Γn]. We then define the Iwasawa algebra to be

Zp[[Γ]] = lim←−
n

Zp[Γn] ∼= lim←−Zp[T ]/((1 + T )p
n − 1)

Theorem 4.4. We have a topological isomorphism

Λ→ Zp[Γ]

T 7→ γ − 1
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Proof. Write ωn(T ) = (1 + T )p
n − 1. Then ωn is distinguished and

ωn+1(T )

ωn(T )
= (1 + T )p

n(p−1) + · · ·+ (1 + T )p
n

+ 1 ∈ (p, T )

By induction on n, it then follows that ωn(T ) ∈ (p, T )n+1. Now, the division algorithm
implies that we have a continuous surjection

Λ→ Λ/(ωn) ∼= Zp[T ]/(ωn) ∼= Zp[Γn]

which is compatible with the transition maps Zp[Γm] → Zp[Γn]. By the universal property
of the inverse limit, this continuous map factors through the continuous map

ε : Λ→ Zp[[Γ]]

T 7→ γ − 1

Observe that

ker ε ⊆
⋂
n

(ωn) ⊆
⋂
n

(p, T )n+1 = 0

by Krull’s intersection theorem. Hence ε is injective. Now, Λ and Zp[[Γ]] are both profinite.
In particular, Λ is compact and Zp[[Γ]] is Hausdorff. Since ε is continuous, im ε is compact
in Zp[[Γ]] and is thus closed as a compact subspace of a Hausdorff space. On the other hand,
im ε is dense in Zp[[Γ]] since it is surjective on each finite level of the inverse system. It then
follows that ε is surjective.

Thus far, we have shown that ε is an isomorphism of groups and is continuous. It remains
to show that ε is a homeomorphism. But this immediate since it is a continuous bijection
from a compact space to a Hausdorff space.

We want to prove the following Theorem:

Theorem 4.5. Let K∞/K be a Zp-extension with intermediate fields Kn. Let pen be the
exact power of p dividing the class number of Kn. Then there are integers λ ≥ 0, µ ≥ 0
called the Iwasawa invariants of K∞/K and an integer v (all independently of n) and
an integer n0 such that

en = λn+ µpn + v

for all n ≥ n0.

Proof. Denote Γ = Gal(K∞/K) ∼= Zp and fix a topological generator γ0 of Γ. Denote by Ln
the maximal unramified abelian p-extension of Kn. By class field theory, Ln is a subfield
of the Hilbert class field of Kn whose Galois group over Kn is the ideal class group of Kn.
Then Gal(Ln/Kn) ∼= An where An is the p-Sylow subgroup of the ideal class group of Kn.

Define L =
⋃
n≥1 Ln and X = Gal(L/K∞). Since each Ln is Galois over Kn and maximal,

it follows that L is Galois over K. Denote G = Gal(L/K) so that we have the following
diagram of Galois extensions:

L

K∞

K

X

G/X=Γ

G
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The proof shall involve the following ideas. We shall give X the stucture of a Γ-module
so that X is a Λ-module. We will then show that X is finitely generated as a Λ-module and
has Λ-torsion. By the structure theorem, X will thus be pseudo-isomorphic to a direct sum
of modules of the form Λ/(pk) and Λ/(P (T )k). These modules are easy to work with at the
nth level. We can then transfer the result back to X across the pseudo-isomorphism.

We first assume that all primes in K∞/K which ramify in fact ramify totally. This can
be achieved by applying Lemma 1.4 to K to obtain an intermediate extension Km/K of
K∞/K satisfying the desired properties so we may replace K by Km.

Under this assumption, it follows that Kn+1 ∩ Ln = Kn for all n. Hence

Gal(LnKn+1/Kn) ∼= Gal(Ln/Kn)×Gal(Kn+1/Kn)

Quotienting both sides by Gal(Ln/Kn) we get that

Gal(LnKn+1/Kn+1) ∼= Gal(Ln/Kn)

This is a quotient of Xn+1 = Gal(Ln+1/Kn+1) since LnKn+1 ⊆ Ln+1. We thus have a
natural surjective map Xn+1 → Xn which corresponds to the norm map on ideal class
groups An+1 → An. Observe that Xn

∼= Gal(LnK∞/K∞) so that

lim←−
n

Xn
∼= Gal

((⋃
n≥1

LnK∞

)
/K∞

)
= Gal(L/K∞) = X

Now since Xn is an abelian p-group, it has the natural structure of a Zp-module. Let
Γn = Γ/Γp

n ∼= Gal(Kn/K). Given γ ∈ Γn, let γ̃ ∈ Gal(Ln/K) be an extension of γ to Ln.
Define a Γn-action on Xn by setting

xγ = γ̃xγ̃−1

This action is well-defined since any other extension of γ to Ln differs from γ̃ by an element
of Xn = Gal(Ln/Kn). Hence Xn is a Zp[Γn]-module. Passing to the limit gives X the
structure of a (Zp[[Γ]] ∼= Λ)-module. Explicitly, the action of Zp[[G]] on X is

xγ = γ̃xγ̃−1

where γ̃ is an extension of γ ∈ Γ to G.
Now denote the primes that ramify in K∞/K as p1, . . . , ps. For each i, let Pi be a

prime of L lying over pi and Ii the inertia subgroup of G relative to Pi. Since L/K∞ is
unramified, it follows that Ii ∩ X = 1 for all i. Hence the inclusion Ii → G induces an
injective homomorphism Ii → G/X = Γ for all i. But K∞/K is totally ramified at pi so, in
fact, this homomorphism is surjective and we thus have isomorphisms Γ ∼= Ii for each i. In
other words, G = IiX = XIi for all i.

Now let σi ∈ Ii map to γ0 ∈ Γ. Then σi is a topological generator of Ii. Moreover since
Ii ⊆ XI1, there exists ai ∈ X such that σi = aiσ1.

Lemma 4.6. Let G′ be the closure of the commutator subgroup of G. Then

G′ = Xγ0−1 = TX
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Proof. Since we have an isomorpism Γ ∼= I1 and also an inclusion I1 ⊆ G, we can lift γ ∈ Γ
to the corresponding element of I1 in order to define the action of Γ on X. To ease notation,
we identify Γ with I1 and write the action as

xγ = γxγ−1

for x ∈ X and γ ∈ Γ. Now fix a, b ∈ G and write a = αx, b = βy for some α, β ∈ Γ and
x, y ∈ X. Then

aba−1b−1 = αxβyx−1α−1y−1β−1

= xααβyx−1α−1y−1β−1

= xα(yx−1)αβ(αβ)α−1y−1β−1

= xα(yx−1)αβ(y−1)β (Γ is abelian)

= xαx−αβyαβy−β

= xα(1−β)y(α−1)β

Now set β = 1 and α = γ0. Then yγ0−1 ∈ G′ and so Xγ0−1 ⊆ G′. Now suppose that β is
arbitrary. Then there exists c ∈ Zp such that β = γc0. Then

1− β = 1− γc0 = 1− (1 + T )c = 1−
∞∑
n=0

(
c

n

)
T n ∈ TΛ

Now since γ0 − 1 = T , it follows that (xα)1−β ∈ Xγ0−1. By a similar argument, (yβ)1−α ∈
Xγ0−1. Now, X is compact Hausdorff and Xγ0−1 = TX is the image of the compact space
X under the continuous map x 7→ Tx and so Xγ0−1 is closed in X. It then follows that
G′ ⊆ Xγ0−1

Lemma 4.7. Let Y0 be the Zp-module of X generated by the set { ai | 2 ≤ i ≤ s } and by
Xγ0−1 = TX. Set Yn = vnY0 where

vn = 1 + γ0 + γ2
0 + · · ·+ γp

n−1
0 =

(1− T )p
n − 1

T

Then Xn
∼= X/Yn for all n ∈ N.

Proof. First suppose that n = 0. We have that K ⊆ L0 ⊆ L. Recall that L0 is the maximal
unramified p-extension of K. Since L/K is a p-extension, L0/K is the maximal unramified
abelian subextension of L/K. Hence Gal(L/L0) is the closed subgroup of G generated by G′

and all the inertia groups Ii. In other words, Gal(L/L0) is the closure of the group generated
by Xγ0−1, I1 and { ai | 2 ≤ i ≤ s }. Then

X0 = Gal(L0/K) = G/Gal(L/L0) = XI1/Gal(L/L0)

= X/〈Xγ0−1, a2, . . . , as〉
= X/Y0

Now, for the general case, replace K with Kn and γ0 with γp
n

0 . Then we may replace σi with
σp

n

i . Now,

σk+1
i = (aiσ1)k+1 = a1σ1aiσ

−1
1 σ2

1aiσ
−2
1 · · ·σk1aiσ−kσk+1

1

= a
1+σ1+σ2

1+···+σk
1

1 σk+1
1

Hence σp
n

i = (vnai)σ
pn

i so ai is replaced by vnai. Furthermore, Xγ0−1 is replaced by (γp
n

0 −
1)X = vnX

γ0−1. Hence Y0 becomes vnYn as desired.
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Lemma 4.8 (Nakayama). Let X be a compact Hasudorff Λ-module. Then

1. If (p, T )X = X then X = 0

2. If X/(p, T )X is finite then X is finitely generated by a set of representatives of X/(p, T )X
and has Λ-torsion.

Proof. We first claim that ⋂
n≥1

(p, T )nX = 0

To this end, fix an open neighbourhood U of 0 in X. Since the action of Λ on X is continuous
and (p, T )n → 0, it follows that for each x ∈ X, there exists an open neighbourhood Ux of
x and an integer n(x) such that

(p, T )n(x)Ux ⊆ U

Now, X is compact so the open cover {Ux }x∈X of X admits a finite subcover. It then
follows that there must exist some integer n and an open neighbourhood Ux of x such that
(p, T )nUx ⊆ U . Now, (p, T )X = X implies that (p, T )nX = X and so X ⊆ U for all U . But
X is Hausdorff so X = 0.

Now assume that x1, . . . , xn are representatives of X/(p, T )X. Let Y = Λx1 + . . .Λxn ⊆
X. Then Y is compact since it is the image of Λn under the natural map. Since X is
Hausdorff, Y is thus closed. It then follows that X/Y is compact Hausdorff. By Part 1, we
then see that X/Y = 0 whence X = Y .

To see that X is torsion, let pk be the exponent of X/(p, T )X so that pkxi ∈ TX for all
1 ≤ i ≤ n. Write

pkxi =
m∑
j=1

Taij(T )xj

Let A = (pkδij − Taij(T ))i,j and denote g(A) = detA ∈ Λ. Then, clearly, g(A)xi = 0 for all
1 ≤ i ≤ n but g(0) = pkn 6= 0.

Lemma 4.9. X = Gal(L/K∞) is a finitely generated torsion Λ-module.

Proof. Observe that v1 ∈ (p, T ) and so Y0/(p, T )Y0 is a quotient of Y0/v1Y0 = Y0/Y1 ⊆
X/Y1 = X1 which is finite. Hence Y0/(p, T )Y0 is finite and is thus a finitely generated
torsion Λ-module by Nakayama’s Lemma. But X/Y0 = X0 which is finite so X must be
finitely generated and torsion too.

We may now remove the assumption given above:

Proposition 4.10. Let K∞/K be a Zp-extension. Then X is a finitely generated Λ-module
and there exists e ≥ 0 such that

Xn
∼= X/vn,eYe

for all n ≥ e where vn,e = vn/ve.
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Proof. By Proposition 1.4, there exists e ≥ 0 such that every prime of K∞/Ke that ramifies
in fact ramifies totally. Then X is a finitely generated Zp-module by the previous Lemmata.
Now if n ≥ e we have

vn,e =
vn
ve

= 1 + γp
e

0 + γ2pe

0 + · · ·+ γp
n−pe

0

This replaces vn for Ke since γp
e

0 generates Gal(K∞/Ke). Now let Ye be the Y0 provided by
Lemma 4.7. Then Yn = vn,eYe and Xn

∼= X/Yn for all n ≥ e as claimed.

Proposition 4.11. Consider the finitely generated Λ-module

E = Λr ⊕

(
s⊕
i=1

Λ/(pki)

)
⊕

(
t⊕

j=1

Λ/(gj(T ))

)

where each gj(T ) is distinguished. Let m =
∑

i ki and l =
∑

j deg gj. If E/vn,eE is finite
for all n then r = 0 and there exists n0 and c such that

|E/vn,eE| = pmp
n+ln+c

for all n > n0.

Proof. Let V be a summand of E. We shall calculate V/vn,eV for each possible value of E.
First suppose that V = Λ. Since vn,e 6∈ Λ×, it follows that Λ/(vn,e) is infinite by Lemma
3.10. But this contradicts the hypothesis that E/vn,eE is finite for all n. Hence V = Λ does
not occur as a summand.

Now suppose that V = Λ/(pk) for some k. Then

V/vn,eV ∼= Λ/(pk, vn,e)

Observe that if the quotient of two distinguished polynomials is again a polynomial then the
quotient is itself distinguished (or constant). Thus vn,e is distinguished. The division algo-
rithm then implies that every element of Λ/(pk, vn,e) is uniquely represented by a polynomial
modulo pk of degree less than deg vn,e = pn − pe. Hence

|V/vn,eV | = pk(pn−pe) = pkp
n+c

for some constant c.
Now assume that V = Λ/(g(T )) for some distinguished g(T ). Let d = deg g. Then

T d ≡ pQ(T ) (mod g)

From now on, let Q(T ) be a placeholder for a polynomial whose exact form isn’t important.
If k ≥ d then

T k ≡ pQ(T ) (mod g)

So if pn ≥ d we have

(1 + T )p
n

= 1 + pQ(T ) + T p
n

≡ 1 + pQ(T ) (mod g)

and thus

(1 + T )p
n+1 ≡ 1 + p2Q(T ) (mod g)
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If we denote Pn(T ) = (1 + T )p
n − 1 then we have

Pn+2(T ) = (1 + T )p
n+2 − 1 = ((1 + T )(p−1)pn+1

+ · · ·+ (1 + T )p
n+1

+ 1)((1 + T )p
n+1 − 1)

= (1 + · · ·+ 1 + p2Q(T ))Pn+1(T )

≡ p(1 + pQ(T ))Pn+1(T ) (mod g)

Now let ε be a placeholder for an element of Λ×. Then we see that Pn+2/Pn+1 acts as pε on
Λ/(g) for pn ≥ d. Now assume that n0 > e such that pn0 > d. Then for all n ≥ n0 we have

vn+2,e

vn+1,e

=
vn+2

vn+1

=
Pn+2

Pn+1

whence

vn+2,eV =
Pn+2

Pn+1

(vn+1,eV ) = pvn+1,eV

and so

|V/vn+2,eV | = |V/pV | · |pV/pvn+1,eV |

Since g is coprime to p, multiplication by p is an injective endomorphism of V and so

|pV/pvn+1,eV | = |V/vn+1,eV |

On the other hand,

V/pV ∼= Λ/(p, g) = Λ/(p, T d)

so that |V/pV | = pd. By induction on n it then follows that

|V/vn,eV | = pd(n−n0−1)|V/vn0+1,eV |

for n ≥ n0 + 1. Hence

|V/vn,eV | = pdn+c

for all n ≥ n0 + 1 and some constant c.
The Proposition then follows upon putting together each summand.

Corollary 4.12. Let K∞/K be a Zp-module so that X is a finitely generated Λ-module and
Xn
∼= X/vn,eYe for some e ≥ 0. Then

Ye ∼ X ∼
s⊕
i=1

Λ/(pki)⊕
t⊕

j=1

Λ/(gj(T )) = E

for some distinguished irreducible polynomials gj. Moreover, |E/vn,eE| is finite for all n and
there exist constants n0 and c such that for all n ≥ n0 + 1 we have

|E/vn,eE| = pmp
n+ln+c

where m =
∑

i ki and l =
∑

j deg gj.
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Proof. We first observe that, since Xe = X/Ye is finite, and Ye ⊆ X, we have a pseudo-
isomorphism Ye ∼ X. Moreover, X is pseudo-isomorphic to a Λ-module of the form

Λr ⊕
s⊕
i=1

Λ/(pki)⊕
t⊕

j=1

Λ/(gj(T ))

by the Structure Theorem for Finitely Generated Λ-modules. Now, Lemma 3.10 implies
that Λ/(vn,e) is infinite. Since Ye/vn,eYe this is not possible. Hence Λ cannot occur in the
direct summand decomposition above. It remains to show that each |E/vn,eE| is finite. The
summands of the form Λ/(pki) were shown to always be finite in the previous proof. The
only case we need to worry about is whether or not Λ/(gj, vn,e) is finite. By Lemma 3.7,
this is certainly finite since gj and vn,e are coprime. The rest of the Corollary then follows
immediately from the Proposition.

Corollary 4.13. Let E be a finitely generated Λ-module of the form

E = Λr ⊕

(
s⊕
i=1

Λ/(pki)

)
⊕

(
t⊕

j=1

Λ/(gj(T ))

)

If m =
∑

i ki then m = 0 if and only if the p-rank of E/vn,eE is bounded as n→∞.

Proof. Recall that the p-rank of a finite abelian group A is the number of direct summands
of p-power order of A. By tensoring with Z/pZ, the p-rank is equal to dimZ/pZ(A/pA). With
this in mind, we have

E/(p, vn,e)E =
s⊕
i=1

Λ/(p, vn,e)⊕
t⊕

j=1

Λ/(p, vn,e, gj)

Now, vn,e is a distinguished polynomial of degree pn− pe so if deg vn,e ≥ max deg gj then we
have

E/(p, vn,e)E =
s⊕
i=1

Λ/(p, T p
n−pe)⊕

t⊕
j=1

Λ/(p, T deg gj)

∼= (Z/pZ)s(p
n−pe)+l

where l =
∑

j deg gj. This is bounded as n→∞ if and only if s = 0 if and only if m = 0.

Lemma 4.14. Let Y and E be Λ-modules such that Y ∼ E and Y/vn,eY is finite for all
n ≥ e. Then there exist constants c and n0 such that

|Y/vn,eY | = pc|E/vn,eE|

for all n ≥ n0.

Proof. We have a commutative diagram

0 vn,eY Y Y/vn,eY 0

0 vn,eE E E/vn,eE 0

φ′n φ φ′′n
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We first claim that we have the following inequalities:

1. | kerφ′n| ≤ | kerφ|

2. | cokerφ′n| < | cokerφ|

3. | cokerφ′′n| < | cokerφ|

4. | kerφ′′n| < | kerφ| · | cokerφ|

Inequality 1 is immediate. Inequality 2 follows upon multiplying the representatives of
cokerφ by vn,e. Inequality 3 follows from the fact that representatives of cokerφ give repre-
sentatives of cokerφ′′n. To prove inequality 4, first note that the Snake Lemma gives us an
exact sequence

0 kerφ′n kerφ kerφ′′n cokerφ′n cokerφ cokerφ′′n 0

so that | kerφ′′n| ≤ | kerφ| · | cokerφ′n| ≤ | kerφ| · | cokerφ|.
Now let m ≥ n ≥ 0. We claim that we have the following inequalities:

a. | kerφ′n| ≥ | kerφ′m|

b. | cokerφ′n| ≥ | cokerφ′m|

c. | cokerφ′′n| ≤ | cokerφ′′m|

To prove a, first observe that vm,e = (vm,e/vn,e)vn,e and so vm,eY ⊆ vn,eY whence kerφ′m ⊆
kerφ′n. To prove b, fix vm,ey ∈ vm,eE. Let z ∈ vn,yE be a representative of [vn,ey] ∈ cokerφ′n.
Then vn,ey − z = φ(vn,ex) for some x ∈ Y . Multiplying by vm,e/vn,e we get

vm,ey −
(
vm,e
vn,e

)
z = φ(vm,ex) = φ′m(vm,e(x))

So vm,e/vn,e times representatives of cokerφ′n gives representatives of cokerφ′m whence b. c
is immediate from the fact that vm,eE ⊆ vn,eE.

Combining all these inequalities, we see that the orders of kerφ′n, cokerφ′n and cokerφ′′n
are constant for all n ≥ n0 for some n0. From the above exact sequence, we have

| kerφ′n| · | kerφ| · | kerφ′′n| = | cokerφ′n| · | cokerφ| · | cokerφ′′n|

so that | kerφ′′n| is also constant for all n ≥ n0. Now, the exact sequence

0 kerφ′′n Y/vn,eY E/vn,eE cokerφ′′n 0

implies that |Y/vn,eY | = |E/vn,eE| · | kerφ′′n| · | cokerφ′′n|−1 = pc|E/vn,eE| for some constant
c and all n ≥ n0.

We cam now finally prove the original Theorem:

Theorem 4.15. Let K∞/K be a Zp-extension with intermediate fields Kn. Let pen be the
exact power of p dividing the class number of Kn. Then there are integers λ ≥ 0, µ ≥ 0
called the Iwasawa invariants of K∞/K and v (independently of n) and an integer n0

such that

en = λn+ µpn + v

for all n ≥ n0.
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Proof. Let e ≥ 0 be such that all primes that ramify in K∞/Ke ramify totally. Then we
have that X is a finitely generated Λ-module and Xn

∼= X/vn,eYe. Since Xe = X/Ye is finite
(and a power of p), we have that

|Xn| = |X/Ye| · |Y/vn,eY | = |X/Ye| · pc · |E/vn,eE| = pλn+µpn+v

for all n ≥ n0 for some constants n0, λ, µ and v.

5 The 1-dimensional Main Conjectures

Definition 5.1. Let M be a finitely generated torsion Λ-module so that

M ∼
s⊕
i=1

Λ/(pki)⊕
t⊕

j=1

Λ/(fj(T )gj)

for some irreducible distinguished polynomials fj. We define the characteristic polyno-
mial of M to be

char(M) =
s∏
i=1

pki ×
t∏

j=1

f
gj
j

Theorem 5.2 (Mazur-Wiles). Let Q∞ be the cyclotomic Zp-extension of Q. Let F∞ =
Q(µp∞) be the extension of Q generated by all p-power roots of unity, ∆ = Gal(Q(µp)/Q)
and denote Γ = Zp. Recall that we have an isomorphism

G = Gal(F∞/Q) ∼= ∆×Gal(Q∞/Q) = ∆× Γ

Let Fn = Q(µpn). Denote by En the group of global units of Fn and Cn the subgroup of En
consisting of the cyclotomic units. These are both Gal(Fn/K)-modules. We recall that the
closure of En in

∏
p/p UFn,p is a finitely generated Zp-module and thus so is the corresponding

closure of Cn. Define

E∞ = lim←−
n∈N

En, C∞ = lim←−
n∈N

Cn

with respect to the norm maps. Then E∞ and C∞ are finitely generated Zp[[Gal(F∞/Q)]] =
Γ[[∆]] = Λ[∆]-modules.

Let An be the p-part of the ideal class group of Fn and denote X∞ = lim←−n∈NAn with
respect to the norm maps.

Now fix a character χ : ∆ → Z×p . Given a Λ[∆]-module M , let Mχ = eχM be the
χ-isotypical part of M .

From previous results, we know that X is a finitely generated torsion Λ-module whence
so is Xχ. It can be shown that (E∞/C∞)χ is also a finitely generated torsion Λ-module.
Then

char(Xχ) = char((E∞/C∞)χ)

Theorem 5.3 (Rubin). Let K be an imaginary quadratic fieled and p a rational prime that
splits completely into distinct primes p and p∗ in K. Let K∞ be the unique Zp-extension of
K which is ramified only at p. Let F0 be an abelian extension of K such that [F0 : K] is
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prime to p and such that F0 contains the Hilbert class field of K. Then p is totally ramified
in K∞/K and K∞ ∩ F0 = K. Let F∞ = F0K∞. Denote

∆ = Gal(F∞/K∞) = Gal(F0/K)

Γ = Gal(K∞/K) = Gal(F∞/F0)

so that Gal(F∞/K) = ∆×Γ. Let Fn be the extension of F0 of degree pn in F∞. If we replace
Cn in the above Theorem with the subgroup of En consisting of the elliptic units then we
again have finitely generated Λ-modules X∞, C∞, E∞.

The images of a character χ : ∆ → Q×p lie entirely in the ring of integers of an n-
dimensional extension of Qp in which case we say that dimχ = n. For simplicity, we
assume that dimχ = 1 but the main conjecture in this case can be formulated perfectly
analogously for arbitary dimensions.

The rest of the statements of the previous Theorem then follow through immediately and
we get

char(Xχ
∞) = char((E∞/C∞)χ)
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