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Chapter 1

Topological Spaces and
Continuous Functions

1.1 Topological Spaces

Definition 1.1.1. A is open if ∀x ∈ A, ∃ ε > 0 such that (x− ε, x+ ε) ⊆ A

Proposition 1.1.2. Let τ = {A ⊆ R |A is open }. Then τ satisfies the fol-
lowing properties:

1. ∅, R ∈ τ

2. τ is closed to arbitrary unions

∀ I,∀ {Ui}i∈I ⊆ τ, (
⋃
i∈I Ui) ∈ τ

3. τ is closed to taking finite intersections

∀U1, U2, . . . , Un ∈ τ (Ui open), (
⋂n
i=1 Ui) ∈ τ is open

Proof. We prove parts 2 and 3:

Part 2: Let U =
⋃
i∈I Ui, x ∈ U

x ∈ U =⇒ ∃ i ∈ I such that x ∈ Ui

1
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∃ ε > 0 such that (x− ε, x+ ε) ⊆ Ui ⊆ U

Since x ∈ U is arbitrary =⇒ U is open

Part 3: Let U =
⋂n
i=1 Ui, x ∈ U

∀ i ≤ n, x ∈ Ui

∀ i,∃ εi > 0 such that (x− εi, x+ εi) ⊆ Ui

Take ε = mini≤n{εi} > 0. Then ∀ i ≤ n, (x− ε, x+ ε)
⊆ (x− εi, x+ εi) ⊆ Ui

=⇒ (x− ε, x+ ε) ⊆ U =⇒ U is open

Definition 1.1.3. Let X be any set (finite or infinite). A topology τ on X is
a collection of subsets of X ( τ ⊆ 2X) satisfying the following axioms:

• ∅, R ∈ τ

• ∀ I,∀ {Ui}i∈I ⊆ τ,
⋃
i∈I Ui ∈ τ

• ∀n,∀U1, . . . , Un ∈ τ,
⋂n
i=1 Ui ∈ τ

Remark.

• Each element of τ is a subset of X

• We say that a set U ∈ τ is open (relatively to τ)

• A closed set is the complement of an open set i.e C = X\U, U ∈ τ

Example 1.1.4. Consider X = {a, b, c}.

A topology on X is τ = {∅, X, {a, b}}. The closed sets are ∅, X, {c}.

Another topology on X is τ = {∅, X, {a, b}, {c}}. The closed sets are ∅, X, {a, b}, {c}.

τ = {∅, X, {a, b}, {b}, {c}} is not a topology as it violates the second axiom.
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Example 1.1.5. Consider X = R and τ = {open in the usual sense } then
τ is called the standard topology on RRR.

Example 1.1.6. Let X be an arbitrary set. Then we can define the following
two topologies on X:

• τ1 = {∅, X} - trivial topology

• τ2 = 2X = {A |A ⊆ X} - discrete topology

Example 1.1.7. Consider X = R and τ = {(a, b) | a < b}. Then τ satisfies
the first and third axioms but violates the second. Indeed, consider U1 =
(1, 2), U2 = (3, 4). U1, U2 ∈ τ but U1 ∪ U2 /∈ τ .

Proposition 1.1.8. Let X be an arbitrary set. Consider τf = {A ⊆ X |X\A is finite}∪
{∅}. Then τ is a topology on X and is called the finite complement topol-
ogy on X.

Proof. ∅, X ∈ τf is trivial.

Let {Ui}i∈I ⊆ τf
If ∀ i, Ui = ∅ then

⋃
i∈I Ui = ∅ ∈ τf

Otherwise, X\U = X\(
⋃
i∈I Ui) =

⋂
i∈I(X\Ui) ⊆ X\Ui =⇒ X\U is finite

=⇒ U ∈ τf

Now consider U1, . . . , Un ∈ τf
X\U =

⋃n
i=1(X\Ui) is a finite union of finite sets =⇒ X\U is finite

=⇒ U ∈ τf

Definition 1.1.9. Let X be an arbitrary set and τ, τ ′ two topologies defined
on X. We say that τ ′ is finer than τ if τ ⊆ τ ′ (τ is coarser than τ ′).
If either τ is finer or coarser than τ ′ then we say that τ, τ ′ are comparable.

Proposition 1.1.10. Consider X = R. Let τ be the standard topology on R
and τf the finite complement topology on R. Then τ is finer than τf .

Proof. We need to show that τf ⊆ τ .

τf = {U ⊆ R |R\U = {finite or R}}
Let U ∈ τf then U = {∅ or R\{x1, . . . , xn}}
If U = ∅ then U ∈ τ so suppose U 6= ∅
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Then R\{x1, . . . , xn} ∈ τ as we can always find points with a small enough
neighbourhood in R such that the points are open.
=⇒ τf ⊆ τ
In fact, τf ( τ (τ is strictly finer than τf e.g (0, 1) ∈ τ\τf )

1.2 Topology Bases

Definition 1.2.1. Let X be a set. A topology basis on X is a collection
B of subsets of X satisfying:

1. ∀x ∈ X, ∃B ∈ B such that x ∈ B

2. ∀B1, B2 ∈ B,∀x ∈ (B1 ∩B2),∃B3 ∈ B |x ∈ B3 ⊆ (B1 ∩B2)

(The finite intersection property B1, B2 ∈ B =⇒ B1 ∩ B2 ∈ B is stronger
than the second axiom.)

Proposition 1.2.2. Let B be a topology basis. Then it generates the following
topology τ = τB on X: For U ⊆ X,U ∈ τ if

∀x ∈ U,∃B ∈ B such that x ∈ B ⊆ U

Proof.

1. We first show that ∅, X ∈ τ

∅ - satisfied trivially
X - ∀x ∈ X, ∃B ∈ B such that x ∈ B ⊆ X =⇒ X ∈ τ

2. Now we show that for {Ui}i∈I ⊆ B then U =
⋃
i∈I Ui ∈ τ

If x ∈ U,∃ i0 such that x ∈ Ui0 , Ui0open
=⇒ ∃B ∈ B such that x ∈ B ⊆ Ui0 ⊆ U

3. Finally we prove by induction that ∀U1, . . . , Un ∈ τ,
⋂n
i=1 ∈ τ

By induction, we may assume that n=2.
Consider U1, U2 ∈ τ . We must show that U = U1 ∩ U2 ∈ τ . Let x ∈ U .
Since U1 is open, we can excise an open neighbourhood around x in U1.
The same can be said for U2.
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Since x ∈ U1, U2 ∈ τ, ∃B1 ∈ B such that x ∈ B1 ⊆ U1. By the same
argument on U2 ∈ τ, ∃B2 ∈ B ⊆ U2 =⇒ x ∈ B1 ∩B2 ⊆ U1 ∩ U2 = U .
By the second basis axiom, we can choose a basis element B3 contain-
ing x such that B3 ⊆ B1 ∩ B2. Then x ∈ B3 and B3 ⊆ U1 ∩ U2, so
U1 ∩ U2 belongs to τ .

We now assume that the fact is true for n − 1 and prove it for n.
Now:

U1 ∩ · · · ∩ Un = (U1 ∩ · · · ∩ Un−1) ∩ Un

By hypothesis, U1 ∩ · · · ∩Un−1 belongs to τ . By the result just proved,
the intersection of U1 ∩ · · · ∩ Un−1 and Un also belongs to τ .

Remark. τ is the coarsest topology that makes all sets B ∈ B open.

Example 1.2.3. Let X = R,B = {(a, b) | a < b, a, b ∈ R}

1. Let ε = 1 then ∀x, x ∈ (x− ε, x+ ε) - first axiom satisfied

2. Consider (a, b), (c, d) ∈ B then (a, b) ∩ (c, d) = {∅ or (α, β)} for some
α, β ∈ R - second axion satisfied

This basis generates the standard topology on R.

Example 1.2.4. Let X = R2,B = {Br(x) |x ∈ R2, r > 0}

1. Let r = 1 then Br(x) ∈ B - first axiom satisified

2. The finite intersection property is not satisfied but we can always excise
a small open neighbourhood around a point in the intersection of two
open balls - second axion satisfied

This basis generates the standard topology on R.

Example 1.2.5. Let X = R2,B = {open rectangles } = {(a, b) x (c, d) | a <
b, c < d}

1. Consider (x, y) ∈ R2 and take B = (x − 1, x + 1)x(y − 2, y + 2) then
B ∈ B - first axiom satisfied
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2. U1 ∩ U2 = {∅ or open rectangle} - finite intersection property satisfied

This basis defines the same standard topology on R as the previous example.

Example 1.2.6. Let X be an arbitrary set, B = {Bx = {x} |x ∈ X}

1. ∀x ∈ X, x ∈ Bx - first axiom satisfied

2. Bx ∩By =

{
{x} if x = y
∅ if x 6= y

- finite intersection property satisfied

Proposition 1.2.7. Let X and B be as in the previous example. Then the
topology by B on X is τB = 2X (discrete topology).

Proof. Consider U ⊆ X. ∀x ∈ U, x ∈ Bx ⊆ U . Since we have Bx ∈ B, B
must generate the discrete topology.

Lemma 1.2.8. Let B be a topology basis on a set X and let τ be the topology
generated by B. Then:

τ =

{⋃
i∈I

Bi |Bi ∈ B

}

In other words, τ consists of arbitrary unions of basic neighbourhoods.

Proof. Let τ ′ =
{⋃

i∈I Bi | ∀ i ∈ I, Bi ∈ B
}

We must prove that τ = τ ′.

τ ′ ⊆ τ : ∀ i, Bi ∈ τ =⇒
⋃
i∈I Bi ∈ τ by the second axiom of a topology.

τ ⊆ τ ′: Suppose that U ∈ τ . Then ∀x ∈ U,∃Bx ∈ B such that x ∈ Bx ⊆ U .
=⇒ U =

⋃
x∈U Bx.

=⇒ U ∈ τ .

Lemma 1.2.9. Let (X, τ) be a topological space and C a collection of open
sets in X. If ∀U ∈ τ, ∀x ∈ U,∃C ∈ C such that x ∈ C ⊆ U . Then C is a
topology basis that generates τ .

• C is not assumed to be a topology basis.

• All C ∈ C are assumed to be open.
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Proof. First, we show that C is a topology basis.

1. Let x ∈ X, choose U = X. By assumption, ∃C ∈ C such that x ∈ C ⊆
U = X.

2. Consider C1, C2 ∈ C, U = C1 ∩ C2 ∈ τ is open.
Let x ∈ U. By assumption, ∃C3 ∈ C such that x ∈ C3 ⊆ U = C1 ∩ C2.

Now, let τ ′ be the topology generated by C. We claim that τ = τ ′.

τ ⊆ τ ′: Let U ∈ τ . To check that U ∈ τ ′, we have to show that ∀x ∈
U,∃C ∈ C such that x ∈ C ⊆ U which is true by the condition of the lemma.

τ ′ ⊆ τ : Let U ∈ τ ′. By Lemma 1.2.8, we may write U =
⋃
i∈I Ci for some

Ci ∈ C =⇒ U is open as a union of open sets.

Example 1.2.10. Consider X = R equipped with the standard topology and
C = {(a, b) | −∞ < a < b <∞}.
We can see that this is a basis for the standard topology by taking x ∈ (a, b) ⊆
R. Now consider C = (x− ε, x+ ε) ⊆ (a, b) for sufficiently small ε. Indeed,
C ∈ C so by Lemma 2, C is a basis for R equipped with the standard topology.

Example 1.2.11. Consider X = R2 equipped with the standard topology and
B = {Br(x) |x ∈ R2, r > 0}.
Indeed, B generates the standard topology on R2 as given any U ⊆ R2 open
and any x ∈ U , we can always a squeeze an open ball of sufficiently small
radius r around x.
Now consider B′ = {(a, b)x(c, d) | − ∞ < a < b < ∞,−∞ < c < d < ∞}.
This set is also a topology basis for R2 equipped with the standard topology.

Lemma 1.2.12. Let B,B′ be topology bases and τ, τ ′ the corresponding topolo-
gies. The following are equivalent:

1. τ ′ is finer than τ

2. ∀B ∈ B, ∀x ∈ B, ∃B′ ∈ B′ such that x ∈ B′ ⊆ B

Remark. For topological equality (τ = τ ′), we need to check the condition
both ways.
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Proof.

=⇒ : Assume τ ⊆ τ ′. Let B ∈ B, x ∈ B.B ∈ τ ⊆ τ ′ =⇒ x ∈ B ∈ τ . Since
τ ′ is generated by B′,∃B′ ∈ B′, x ∈ B′ ⊆ B.

⇐= : Assume 2. and let U ∈ τ.∀x ∈ U,∃B ∈ B, x ∈ B ⊆ U .
By 2. ∃B′ ∈ B′ such that x ∈ B′ ⊆ B
=⇒ U ∈ τ ′

1.3 Product topology on X × Y
Proposition 1.3.1. Let X, Y be two topological spaces. The product topology
on X × Y is the topology generated by:

B = {U × V |U is open in X, V is open in Y}

Proof.

1. X open in X, Y open in Y =⇒ X × Y ∈ B

2. Consider U × V, U ′ × V ′ ∈ B - first axiom satisfied
(U × V ) ∩ (U ′ × V ′) = (U ∩ U ′) × (V ∩ V ′) ∈ B - finite intersection
property satisfied

Example 1.3.2. Consider X = Y = R both equipped with the standard
topology and X × Y = R2.
The product topology is generated by {I×J | I, J open in R} and is equivalent
to the standard topology on R2.

Theorem 1.3.3. Let B be a topology basis on X and C a topology basis on
Y. Then the collection

D = {B × C |B ∈ B, C ∈ C}

is a basis for the product topology on X × Y .

Proof. We shall prove this theorem by invoking Lemma 2. We must show
that D consists of open sets of X×Y and that ∀ open W ⊆ X×Y, ∀ (x, y) ∈
W,∃D ∈ D such that (x, y) ∈ D ⊆ W .
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1. We have that ∀B ∈ B, B is open in X and ∀, C ∈ C, C is open in Y
by the definition of a topology basis. Hence by the definition of the
product topology, we have that B×C is open in the product topology.
Thus D consists of open sets of X × Y .

2. Consider W ⊆ X × Y open and (x, y) ∈ W . By the definition of the
product topology, ∃U ⊆ X, V ⊆ Y such that (x, y) ∈ U × V ⊆ W .
Since B, C are topology bases for X and Y respectively, we have that
∃B ∈ B, x ∈ B ⊆ U and ∃C ∈ C, y ∈ C ⊆ V .
Now, (x, y) ∈ B × C ⊆ U × V ⊆ W and hence by Lemma 2, D is a
topology basis for the product topology on X × Y .

1.4 Subspace topology

Definition 1.4.1. Let X be a space endowed with a topology τ . If Y is a
subset of X, the collection

τY = {Y ∩ U |U ∈ τ}

is a topology on Y, called the subspace topology. With this topology, Y is
called a subspace of X; its open sets consist of all intersections of open sets
of X with Y.

Lemma 1.4.2. Let (X, τ) be a topological space and Y ⊆ X endowed with
the subspace topology τY . If A ∈ τY and Y ∈ τ then A ∈ τ .

Proof. If A ∈ τY , we have that A = Y ∩ U for some U ∈ τ . Since Y ∈ τ ,
we see that A = Y ∩ U ∈ τ since the intersection of two open sets is again
open.

Lemma 1.4.3. If B is a basis for a topology on X and Y ⊆ X equipped with
the subspace topology τY then the following collection

BY = {B ∩ Y |B ∈ B}

is a topology basis for τY .
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Proof.

1. We show that BY consists of open sets of Y.
Since B is a basis for the topology on X, we have that ∀B ∈ B, B is
open in X. Now, by the definition of the subspace topology, B ∩ Y is
open in Y. Thus BY consists of open sets of Y.

2. We now show that ∀B1, B2 ∈ BY , ∀x ∈ B1 ∩ B2,∃B3 ∈ BY such that
x ∈ B3 ⊆ B1 ∩B2.
Consider B1, B2 ∈ BY and x ∈ B1 ∩ B2. We have that B1 = U1 ∩ Y
and B2 = U2 ∩ Y for some U1, U2 ⊆ X open. Since B is a topology
basis for X, we can find basis elements A1 ⊆ U1, A2 ⊆ U2 such that
x ∈ A1 ∩Y,A2 ∩Y . Hence we have that x ∈ B3 = (A1 ∩Y )∩ (A2 ∩Y ).

Example 1.4.4. Consider Y = [−1, 1] ⊆ R and B = {(a, b) | − ∞ < a <
b <∞} a topology basis on R.
By Lemma 1.4.3, the following is a topology basis for Y:

BY = {(a, b) | − 1 < a < b < 1} ∪ {(a, 1] | − 1 ≤ a < 1} ∪ {[−1, b) | − 1 < b ≤ 1}

Theorem 1.4.5. Let X and Y be topological spaces, A ⊆ X,B ⊆ Y sub-
spaces. Consider τA×B the product topology on A×B and τ̃A×B the subspace
topology on A×B ⊆ X × Y . Then τA×B = τ̃A×B.

Proof. Consider the set U × V , a general basis element for X × Y where U
is open in X and V is open in Y. We can see that (U × V ) ∩ (A× B) is the
general basis element for the subspace toplogy on A×B. Now

(U × V ) ∩ (A×B) = (U ∩ A)× (V ∩B)

Since U ×A and V ×B are the general open sets for the subspace topologies
on A and B respectively, the set (U∩A)×(V ∩B) is the general basis element
for the product toplogy on A × B. Since the two bases are equivalent, the
two topologies must be equivalent.

1.5 Closed sets and limits points

Definition 1.5.1. A subset A of a topological space X is closed if X\A is
open. A is clopen if it is both open and closed.
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Example 1.5.2. Consider X = (0, 1) ∪ (2, 3) ⊆ R. A = (0, 1) is a clopen
subset of X.

Remark. There are no non-trivial (i.e not ∅ or R) clopen subsets of R.
(equivalent to the notion of R being connected).

Theorem 1.5.3. Let X be a topological space. Then the following conditions
hold:

1. ∅ and X are closed

2. ∀ {Ci}i∈I , Ci closed =⇒
⋂
i∈I Ci is closed

3. ∀ i = 1 . . . n, Ci closed =⇒
⋃n
i=1 is closed

Proof.

Part 1: ∅ and X are closed because they are the complements of the open
sets X and ∅ respectively.

Part 2: Let {Ci}i∈I be a collection of closed sets in X. It suffices to show
that X\(

⋂
i∈I Ci) is open in X.

By De Morgan’s Law, we have that X\(
⋂
i∈I Ci) =

⋃
i∈I(X\Ci).

Since each Ci is closed we have that X\Ci is open in X.
Since X is a topological space, arbitrary unions of open sets is again
open. Hence X\(

⋂
i∈I Ci) is open and we are done.

Part 3: Let i = 1 . . . n and Ci a finite number of closed sets in X. It suffices
to show that X\(

⋃n
i=1Ci) is open in X.

By De Morgan’s Law, we have that X\(
⋃n
i=1Ci) =

⋂n
i=1(X\Ci).

Since each Ci is closed, we have that X\Ci is open in X.
Since X is a topological space, finite intersections of open sets are
again open in X. Hence X\(

⋃n
i=1Ci) is open and we are done.

Theorem 1.5.4. Let Y be a subspace of a topological space X. Then a set
A ⊆ Y is closed in Y ⇐⇒ A = Y ∩B for some closed set B closed in X.

Proof.

=⇒ : Let Y be a subspace of X and A ⊆ Y a closed set in Y. By definition,
X\A is open in Y. We can therefore write Y \A = Y ∩ U for some
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set U open in X. This implies that A = Y ∩ (X\U). Since U is open
in X, X\U is closed in X as required.

⇐= : Let A = Y ∩B for some closed set B in X. Since B is closed in X,
we have that X\B is open in X. Hence Y \A = Y ∩ (X\B) is open in
the subspace topology on Y.

Definition 1.5.5. Let X be a topological space and A ⊆ X a subset. We
define the interior of A to be

Int(A) =
⋃

U⊆A,U∈τ

U

We define the closure of A to be

Ā =
⋂

C⊇A, C closed

C

We define the boundary of A to be

∂A = Ā \ Int(A)

Remark. Int A is the biggest open set contained in A and A is open ⇐⇒
A = Int(A).
Ā is the smallest closed set containing A and A is closed ⇐⇒ A = Ā.

Proposition 1.5.6. Let X be a topological space and A ⊆ a subset. Then

Ā = X \ (Int(X\A))

Proof. Ā = X\(X\Ā) = X\(X\(
⋂
C⊇A, C closed C))

= X\(
⋃
C⊇A, C closed (X\C))

Now let U = X\C. By definition, U is open in X.

= X\(
⋃
U⊆X\A, U open U)

= X\(Int(X\A))
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Example 1.5.7. Consider X 6= ∅ endowed with the trivial topology and
A ⊆ X a subset. Then we have:

Int(A) =

{
∅ if A ( X
X if A = X

Ā =

{
∅ if A = ∅
X if A 6= ∅

∂A =

{
∅ if A = X,∅
X if otherwise

Example 1.5.8. Let X be an infinite set endowed with the finite complement
topology τf . Then we have:

Int(A) =

{
A if |X\A| <∞
∅ if |X\A| =∞

Ā =

{
A if |A| <∞
X if |A| =∞

∂A =


X\A if |X\A| <∞
A if |A| =∞
X if |A| <∞, |X\A| =∞

Example 1.5.9. Consider R endowed with the standard topology and A =
Q ⊆ R a subset. Then

∀x ∈ R,∀ ε > 0, (x− ε, x+ ε) * A =⇒ Int(A) = ∅

Hence we see that

Ā = R\(Int(R\∅)) = R
∂A = R\∅ = R

Theorem 1.5.10. Consider the topological space X with subspace Y ⊆ X
and A ⊆ Y a subset. Denote Ā as the closure of A in X and Ã as the closure
of A in Y. Then

Ã = Ā ∩ Y
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Proof.

Ã ⊆ Ā ∩ Y : Since Ā is closed in X, we have that Ā∩ Y is closed in Y. Now,

since A ⊆ Ā ∩ Y and, by definition, Ã equals the intersection
of all closed subsets of Y containing A, we have that Ã ⊆ Ā∩Y .

Ā ∩ Y ⊆ Ã: Ã is closed in Y hence Ã = C ∩ Y for some set C closed in X.
Then C is a closed set of X containing A and, because Ā is the
intersection of all such closed sets, we see that barA ⊆ C hence
Ā ∩ Y ⊆ C ∩ Y = Ã.

Example 1.5.11. Consider X = R2, Y = Q2, A = Z2.
We want to find AQ. We first start by finding Ā (closure in R2).
R2\A is open as we can always squeeze an open ball around any point.
=⇒ A is closed =⇒ Ā = A = Z2.
Now AQ = Ā ∩Q2 = Z2 ∩Q2 = Z2.

Example 1.5.12. Consider X = R, (0, 1] ⊆ R a subspace and A = (0, 1
2
) ⊆

(0, 1] ⊆ R.
AR = [0, 1

2
] =⇒ A(0,1] = [0, 1

2
] ∩ (0, 1] = (0, 1

2
].

Example 1.5.13. Consider S = { 1
n
|n ≥ 1} ⊆ (0, 1] ⊆ R.

First we calculate SR = R\Int(R\S).
Int(R\S) = (R\S)\{0} = R\(S ∪ {0}).
Hence, SR = S ∪ {0}.
Now, S(0,1] = SR ∩ (0, 1] = S =⇒ S is closed in (0, 1].

Theorem 1.5.14. Let X be a topological space, A ⊆ X, x ∈ X.

1. x ∈ Ā ⇐⇒ every neighbourhood of x intersects A

2. Let B be a topology basis for τ . Then x ∈ Ā ⇐⇒ ∀B basic neighbour-
hood of x, B intersects A.

3. x ∈ ∂A ⇐⇒ ∀ neighbourhood U of x, U intersects both A and X\A.

Proof.

Part 1:

=⇒ : Let x ∈ Ā and assume there exists a neighbourhood U0 of x which
does not intersect A.
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Necessarily, U0 ⊆ X\A =⇒ A ⊆ X\U0 = V. Since U0 is an open
set, V by definition is closed. Now by the definition of the closure
of A, we have that x ∈ Ā ⊆ V . Hence x ∈ V ∩ U = ∅ which is a
contradiction.

⇐= : Now consider x ∈ X and assume ∀U neighbourhood of x,
U ∩ A 6= ∅. Let C be any closed set such that C ⊇ A. Assume
by contradiction that x /∈ C. Let x ∈ U = X\C for some open
set U. We have that U = X\C ⊆ X\A which cannot intersect A.
This contradicts that all neighbourhoods of x intersect A.

Part 2:

=⇒ : This is trivial by the fact that Part 1. applies to all
neighbourhoods including basic neighbourhoods.

⇐= : Let B be a topology basis for τ and assume that ∀B basic
neighbourhoods of a point x, B ∩A 6= ∅. It suffices to show that
since all basic neighbourhoods of x intersect A, all
neighbourhoods of x must intersect A; we can then apply Part 1.
By Lemma 1.2.8, we know that all open sets consist of arbitrary
unions of basic open sets. Hence any open neighbourhood U of
x must intersect A since it is the union of basic neighbourhoods
which intersect A.

Part 3: Assume that x ∈ ∂A = Ā\Int(A), x ∈ Ā ⇐⇒ every
neighbourhood of x intersects A. x /∈ Int(A) ⇐⇒ every
neighbourhood of x intersects X\A.

Example 1.5.15. Consider X = Rl (i.e R endowed with the lower limit
topology) generated by {[a, b) | −∞ < a < b <∞} and A = (0, 1). We want
to compute Ā.
Firstly, we see that x ∈ (0, 1) =⇒ x ∈ Ā. We can also see that if x /∈
[0, 1] =⇒ x /∈ Ā.
We now need to check if 0, 1 ∈ Ā.
Let [a, b) be a basic neighbourhood of zero. If a = 0, we have [0, b)∩(0, 1) 6= ∅.
If a < 0, b > 0 then again, [a, b) ∩ (0, 1) 6= ∅. Hence 0 ∈ Ā.
Consider [1, 2) a basic neighbourhood of 1. This contains no points of A and
hence 1 /∈ Ā =⇒ Ā = [0, 1).
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Definition 1.5.16. Let X be a topological space, A ⊆ X a subset and x ∈ X.
x is a limit point of A (x ∈ A′) if ∀U neighbourhood of x, U∩(A\{x}) 6= ∅.
(i.e every neighbourhood of x contains a point of A other than x.)

Theorem 1.5.17. Let X be a topological space and A ⊆ X a subspace, then
Ā = A ∪ A′ (the union is not necessarily disjoint).

Proof.

Ā ⊆ A ∪ A′: Let x ∈ Ā. We show that necessarily, x ∈ A′. Suppose
x /∈ Ā\A. Since x ∈ Ā, every neighbourhood U of x intersects
A at say y ∈ U ∩A. But y ∈ A and x ∈ A =⇒ y 6= x. Hence
U ∩ (A\{x}) 6= ∅ =⇒ x ∈ A′.

A ∪ A′ ⊆ Ā: Let x ∈ A ∪ A′. Then x ∈ A or x ∈ A′. First, assume x ∈ A.
By definition, x ∈ Ā. Now assume x ∈ A′. By definition, if x
is a limit point of A, then every neighbourhood of x intersects
A in a point other then x. Hence it must also be in Ā.

Corollary 1.5.18. A subset A of a topological space is closed ⇐⇒ A′ ⊆ A.

Proof. A ⊆ X closed ⇐⇒ A = Ā ⇐⇒ A = A ∪ A′ ⇐⇒ A′ ⊆ A.

Definition 1.5.19. Let X be a topological space, {xn} ⊆ X a sequence and
x ∈ X. We say

{xn} −→
n→∞

x

if ∀U neighbourhood of x, ∃N ∈ N such that ∀n ≥ N, xn ∈ U .

Example 1.5.20. Let X be equipped with the trivial topology, {xn} ⊆ X a
sequence, x ∈ X. There exists only one neighbourhood of x, namely U = X.
Indeed, xn ∈ U ∀n ≥ 1. Hence xn → x.

Proposition 1.5.21. Let X = R endowed with τf the finite complement
topology and let xn = (−1)n. We claim that xn 9 1.

Proof. Take U = R\{−1} a neighbourhood of 1. Now, xn = 1 for n odd.
No matter how big we choose N, we will always have that xn /∈ U for odd n.
Hence xn 9 1.
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Definition 1.5.22. A topological space X is called Hausdorff or T2 if ∀x 6=
y ∈ X, ∃U1, U2 neigbourhoods of x and y respectively such that U1 ∩ U2 = ∅.

Theorem 1.5.23. Any finite set in a Hausdorff space is necessarily closed.

Proof. Let X be a Hausdorff space and A ⊆ X a finite subset. It is sufficient
to show that any singleton in X is closed since if A is closed then it is the
finite union of singletons.
Let S = {x} ⊆ X be a singleton. Since X is Hausdorff, we have that
∀ y ∈ X, ∃Uy neighbourhood of y such that x /∈ Uy.
Then X\S =

⋂
y 6=x Uy is open =⇒ {x} is closed.

Example 1.5.24. R equipped with the standard topology is a Hausdorff space.
Indeed, given any x 6= y ∈ R, we can always find ε, δ > 0 such that (x −
ε, x+ ε) ∩ (y − δ, y + δ) = ∅.

Example 1.5.25. A space X equipped with the discrete topology is a Haus-
dorff space. Indeed, given any x 6= y ∈ X we can take Ux = {x} and Uy = {y}
and hence Ux ∩ Uy = ∅.

Proposition 1.5.26. Consider X = R equipped with the finite complement
topology τf . Then X is not a Hausdorff space.

Proof. τf = {U |R\U is finite} ∪ {∅}.
If U1 and U2 are neighbourhoods of two points x 6= y ∈ R then neces-
sarily, U1 = R\{x1, x2, . . . , xn}, U2 = R\{y1, y2, . . . , yn}. Now, U1 ∩ U2 =
R\{x1, x2, . . . , xn, y1, y2, . . . , yn} 6= ∅. Hence R equipped with the finite com-
plement topology is not a Hausdorff space.

Theorem 1.5.27. Let X be a Hausdorff space and {xn} ⊆ X a sequence in
X. Then {xn} converges to at most one element of X.

Proof. Assume, to obtain a contradiction, that xn → x, y with x 6= y. Let
U1, U2 be two neighbourhoods of x, y such that U1 ∩ U2 = ∅, the existence
of which is guaranteed by the fact that X is a Hausdorff space.
By hypothesis, we have that:

∃N1 such that ∀n ≥ N1, xn ∈ U1

∃N2 such that ∀n ≥ N2, xn ∈ U2

Now take N := max{N1, N2}. We have that

∀n ≥ N, xn ∈ U1, xn ∈ U2 =⇒ xn ∈ U1 ∩ U2 = ∅

This is a contradiction and hence xn must converge to a single limit point.
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1.6 Continuous functions

Definition 1.6.1. Let X and Y be two topological spaces. f : X → Y is
continuous if

∀V ⊆ Y open , U = f−1(V ) is open

Proposition 1.6.2. If B is a topology basis on Y and ∀B ∈ B, f−1(B) is
open in X then f is continuous.

Proof. Let V be an open set in Y. Then

f−1(V ) = f−1

(⋃
i∈I

Bi

)
=
⋃
i∈I

f−1(Bi)

Since, by assumption, f−1Bi is open, we have f−1(Bi) = Ui for some set Ui
open in X. Hence ⋃

i∈I

f−1(Bi) =
⋃
i∈I

Ui = U

Now since each Ui is open in X, we have that U is open in X and hence f is
a continuous function.

Example 1.6.3. Consider the function

f : R→ Rl
x 7→ x

where R denotes R equipped with the standard topology and Rl denotes R
equipped with the lower limit topology.
V = [0, 1) is indeed open in Rl yet f−1([0, 1)) = [0, 1) is not open in R.
Hence f is not continuous.

Now consider the function

g : Rl → R
x 7→ x

U = (a, b) for some a, b ∈ R is indeed open in R. f−1((a, b)) = (a, b) which
is open in Rl. Hence, g is continuous.
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Example 1.6.4. Consider the function

f : R→ R
x 7→ |x|

where R is equipped with the standard topology. This is a continuous function.

Example 1.6.5. Let X be a topological space and Y ⊆ X a subspace. The
function

i : Y → X

y 7→ y

is continuous. The subspace topology is the coarsest topology that makes i
continuous.

Example 1.6.6. Let X and Y be two topological spaces. The two functions

π1 : X × Y → X

(x, y) 7→ x

π2 : X × Y → Y

(x, y) 7→ y

are continuous. The product topology is the coarsest topology that makes
π1, π2 continuous.

Theorem 1.6.7. Let f : X → Y be a map between two topological spaces X
and Y. The following are equivalent

1. f is continuous

2. ∀A ⊆ X, f(A) ⊆ f(A)

3. ∀B ⊆ Y closed, f−1(B) is closed

4. ∀x ∈ X, V neighbourhood of f(x) ∈ Y, ∃U neighbourhood of x such
that f(U) ⊆ V
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Proof. We shall prove the theorem in the order 1 =⇒ 2 =⇒ 3 =⇒ 1,
1 =⇒ 4 =⇒ 1.

1 =⇒ 2: Assume that f is continuous and let y ∈ f(A). Then ∃x ∈ A such
that f(x) = y.
=⇒ ∀U neighbourhood of x, U ∩ A 6= ∅.

Let V be any neighbourhood of y such that U = f−1(V ) is a
neighbourhood of x, the existence of which is guaranteed by the
assumption that f is continuous.
Now U ∩ A 6= ∅ =⇒ f(U) ∩ f(A) 6= ∅ ⊆ V ∩ f(A).
=⇒ y ∈ f(A) =⇒ y ∈ f(A).

2 =⇒ 3: Let B be a closed set in Y and let A = f−1(B). We want to show
that A is closed in X hence it suffices to show that A = A.
We have that f(A) = f(f−1(B)) ⊆ B. Now let x ∈ A.
=⇒ f(x) ∈ f(A) ⊆ f(A) ⊆ B = B
=⇒ x ∈ f−1(B) = A
=⇒ A ⊆ A =⇒ A = A.

3 =⇒ 1: Let U ⊆ Y be open. We have that f−1(U) = X\f−1(Y \U).
By assumption, we have that f−1(Y \U)closed =⇒ f−1(U) is
open.

1 =⇒ 4: Consider x ∈ X, V neighbourhood of f(x) ∈ Y . Then U = f−1(V )
is a neighbourhood of x.

4 =⇒ 1: Consider V ⊆ Y open and take U = f−1(V ), x ∈ U . By
assumption, ∃Ux such that f(Ux) ⊆ V is a neighbourhood of x.
Then U =

⋃
x∈U Ux is the union of open sets, hence U is open.

Definition 1.6.8. Consider a function f : X → Y . We say that f is a
homeomorphism if f is a continuous bijection whose inverse is also con-
tinuous.
We say that two topological spaces X and Y are homeomorphic if there
exists a homeomorphism f : X → Y .
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Example 1.6.9. The function

id : X → X

x 7→ x

is a homeomorphism.

Example 1.6.10. Consider Y ⊆ X a subspace. The function

i : Y → X

y 7→ y

is not a homeomorphism as i is not bijective.

Example 1.6.11. Consider the function

f : R→ R
x 7→ f(x) = 3x− 1

f is bijective, continuous and its inverse f−1(y) = y+1
3

is also continuous,
hence it is a homeomorphism.

Example 1.6.12. Consider the function

f : [0, 1)→ S1

t 7→ f(t) = (cos(2πt), sin(2πt))

where [0, 1) is endowed with the subspace topology from R and S1 is the unit
circle endowed with the subspace topology from R2.
We have that f is bijective and continuous. However, f([0, 1

4
)) ⊆ S1 is not

an open set of S1. To see this, consider f(0) ∈ S1. We can find no open set
U ⊆ R2 such that f(0) ∈ (U ∩ S1). Hence f is not a homeomorphism.

Theorem 1.6.13. Consider a function f : X → Y with X =
⋃
i∈I Ui,∀ i ∈

I, Ui is open. If ∀ i ∈ I, f |Ui
: Ui → Y is continuous then f is continuous.

Proof. Let V ⊆ Y be open. f−1(V ) = f−1(V ) ∩ (
⋃
i∈I Ui) =

⋃
i∈I(f

−1(V ) ∩
Ui) =

⋃
i∈I(f |Ui

)−1(V ). By assumption, we have that ∀ i ∈ I, (f |Ui
)−1(V ) is

open in Ui =⇒ V is open in X =⇒ f is continuous.
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Theorem 1.6.14. (Pasting Lemma)
Let X = A∪B where A and B are closed in X. Consider f : A→ Y, g : B →
Y such that ∀x ∈ A ∩B, f(x) = g(x). Define

h(x) =

{
f(x) if x ∈ A
g(x) if x ∈ B

where h : X → Y , then h is a continuous function.

Proof. It suffices to show that ∀C ⊆ Y closed, h−1(C) ⊆ X is closed.
h−1(C) = (h−1(C) ∩ A) ∪ (h−1(C) ∩B) = f−1(C) ∪ g−1(C)
Now, since f and g are continuous functions, we have that f−1(C) and g−1(C)
are open in A and B respectively. Hence they are both closed in X and their
union is also closed in X. This implies that h is a continuous function.

Example 1.6.15. Consider the functions

f : [1,∞)→ R
x 7→ x

g : (−∞, 1]→ R
x 7→ −(x− 2)

We have that [1,∞) ∩ (−∞, 1] = {1} and f(1) = g(1) = 1.
Hence, h(x) = |x− 1|+ 1 is continuous by the Pasting Lemma.

Example 1.6.16. Consider the two functions

f : [
√

2,∞) ∩Q→ R
x 7→ 1

g : (−∞,
√

2] ∩Q→ R
x 7→ 0

By definition of the subspace topology on Q, A = [
√

2,∞)∩Q and (−∞,
√

2]∩
Q are both closed in Q. We also have that A ∩ B = ∅ =⇒ f |A∩B = g|A∩B.
Hence h is continuous by the Pasting Lemma.
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Proposition 1.6.17. Let X, Y and Z be three topological spaces and consider
the following functions

f : X → Y

g : Y → Z

If f and g are both continuous then g ◦ f is also continuous.

Proof. Consider Uz ⊆ Z a basic open set. We show that (g ◦ f)−1(Uz) is
open.
Since g is a continuous function, we have that Uy = g−1(Uz) is open for some
Uy ⊆ Y .
Now, since f is also continuous, we have that Ux = f−1(Uy) is open for some
Ux ⊆ X.
But Ux = f−1(Uy) = f−1(g−1(Uz)) = (g ◦ f)−1(Uz), where Uz is basic open
in Z and Ux is open in X.
Hence g ◦ f is continous.

1.7 The Product Topology

Example 1.7.1. Consider

Rω =
∏
i∈Z

R = {(ai)i∈Z | ai ∈ R}

In this section, we will look at endowing Rω with a topology.

Definition 1.7.2. The box topology on X =
∏

i∈I Xi is the topology gen-
erated by the topology basis

B =

{∏
i∈I

Ui

∣∣∣∣∣∀ i, Ui ∈ τXi

}

Definition 1.7.3. The product topology on X =
∏

i∈I Xi is the topology
generated by the topology basis

B =

{∏
i∈I

Ui

∣∣∣∣∣ ∀Ui ∈ τXi
and ∀ i 6= 1, . . . , n , Ui = Xi

}
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Remark.

• The product topology is coarser than the box topology.

• If |I| <∞ then the product topology is exactly the box topology.

Example 1.7.4. Consider Rω =
∏

i∈ZR and A =
∏

i∈Z(−1, 1) ⊆ Rω.
Then A is open in the box topology however it is not open in the product
topology. This is because for infintely many i ∈ Z the only open neighbourhood
of x ∈ R is R. It is obviously not possible to squeeze R inside of (−1, 1) hence
for infinitely many i ∈ Z, there are points that are not open thus A is not
open.

Proposition 1.7.5. Consider X =
∏

i∈N{0, 1} where {0, 1} is equipped with
the discrete topology. Then the box topology on X is discrete.

Proof. Consider x ∈ X. Then x = (x1, x2, x3, . . . ) for some xi ∈ {0, 1}. Each
xi is open in the discrete topology on {0, 1} and hence

∏
i∈N xi is open in

the box topology.

Example 1.7.6. Consider Rω. We have that

B =

{∏
i≤n

(ai, bi)×
∏
i>n

R

∣∣∣∣∣ ∀ i,−∞ < ai < bi <∞

}

is a basis for the product topology on Rω and

B =

{∏
i≥1

(ai, bi)

∣∣∣∣∣∀ i,−∞ < ai < bi <∞

}

is a basis for the box topology on Rω.

Theorem 1.7.7. Consider a topological space X =
∏

i∈ I Xi, let Ai ⊆ Xi be
a subspace and A =

∏
i∈ I Ai ⊆ X. Let τ be the product topology on A and

τ ′ be the subspace topology induced on A from X endowed with the product
topology. Then τ = τ ′. The same holds for the box topology.

Proof. We prove the theorem for the product topology. Consider the set

U =
∏
i≤n

Ui ×
∏
i>n

X
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where Ui a general basis element of Xi. We can see that

U ∩ A =

(∏
i≤n

Ui ×
∏
i>n

X

)
∩
∏
i∈ I

Ai

is the general basis element for the subspace topology on A. Now

U ∩ A =

(∏
i≤n

Ui ×
∏
i>n

X

)
∩
∏
i∈ I

Ai

=
∏
i≤n

(Ui ∩ Ai)×
∏
i≥n

(X ∩ Ai)

=
∏
i≤n

(Ui ∩ Ai)×
∏
i≥n

X

where the last equation is the general basis element for the product topology
on A. Since the two bases agree, the two topologies must be equal.

Theorem 1.7.8. Consider a topological space X =
∏

i∈ I Xi endowed with
the product topology. If each Xi are Hausdorff spaces then X is a Hausdorff
space. The same also applies to the product topology.

Proof. We prove the theorem for the product topology. Let each Xi be
Hausdorff spaces. Consider x 6= y ∈ X and suppose, without loss of gener-
ality, they differ at only one index; say i = i0. We want to show that there
exists Ux, Uy ⊆ X open neighbourhoods of x and y respectively such that
Ux ∩ Uy = ∅. Let

Ux = Uxi0 ×
∏
i 6=i0

Xi

Uy = Uyi0 ×
∏
i 6=i0

Xi

where Uxi0 , Uyi0 are open neighbourhoods of xi and yi respectively such that
Uxi0 ∩ Uyi0 = ∅, the existence of which is guaranteed by the fact that Xi0 is
a Hausdorff space.
To show that Ux∩Uy = ∅, suppose ∃ z ∈ Ux∩Uy. Then zi0 ∈ Uxi0∩Uyi0 = ∅.
This is obviously not possible, hence Ux ∩ Uy = ∅.
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Theorem 1.7.9. Consider a topological space X =
∏

i∈ I Xi endowed with
the product topology and Ai ⊆ Xi subsets. Then∏

i∈ I

Ai =
∏
i∈ I

Ai

The same applies to the box topology.

Proof.

⊆ : Let x = (xi)i∈ I ∈ A =
∏

i∈ I Ai. We want to show that ∀ i ∈ I, xi ∈ Ai.
We first fix an index i = i0 and let Vi0 be a neighbourhood of xi0 .
Consider

V = Vi0 ×
∏
i 6=i0

Xi

a basic neighbourhood of x ∈ X.
By Part 1. of Theorem 1.5.14, we have

x ∈ A =⇒ V ∩ A 6= ∅ =⇒ Vi0 ∩ Ai0 6= ∅

Since Vi0 is an arbitrary neighbourhood of xi0 , we can again invoke
Theorem 1.5.14 to see that xi0 ∈ Ai0 .

⊇ : Let x = (xi)i∈ I ∈
∏

i∈ I Ai and V a basic neighbourhood of x. By

assumption, xi ∈ Ai ∀ i ∈ I.
Then

V =
∏
i≤n

Vi ×
∏
i>n

Xi

for some finite n. Let us first consider the case where i ≤ n.
Since xi ∈ Ai, we can invoke Theorem 1.5.14 and

Vi ∩ Ai 6= ∅ =⇒

(∏
i≤n

Vi

)
∩

(∏
i≤n

Ai

)
=
∏
i≤n

(Vi ∩ Ai) 6= ∅

We now consider the case where i > n.
Again, since xi ∈ Ai, we can invoke Theorem 1.5.14 and

Xi ∩ Ai 6= ∅ =⇒

(∏
i>n

Xi

)
∩

(∏
i>n

Ai

)
=
∏
i>n

(Xi ∩ Ai) 6= ∅
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Now combining the two together, we get

V ∩ A =
∏
i≤n

(Vi ∩ Ai)×
∏
i>n

(Xi ∩ Ai) 6= ∅

Since V is an arbitrary neighbourhood of x, we can once again invoke
Theorem 1.5.14 to see that x ∈ A.

Theorem 1.7.10. Let X =
∏

i∈ I Xi be a topological space endowed with the
product topology and A an arbitrary topological space. Consider the function

f : A→ X

a 7→ (fi(a))i∈ I

where fi : A → Xi for each i. Then the function f is continuous if and only
if each fi is continuous.

Proof.

=⇒ : Suppose that f is continuous. We want to show that each fi is
continuous. it suffices to show that if Ui ⊆ Xi is a basic open
neighbourhood then f−1

i (Ui) is open.
Consider πi the projection of the product onto its ith factor. By the
definition of the product topology, πi is continuous. Indeed, if

πi : X → Xi

(xj)j ∈ J 7→ xi

and Ui ⊆ Xi is basic open, we have that

π−1
i (Ui) = Ui ×

∏
j 6=i

Xj

which is open in X.
Since the composition of continuous functions is continuous, we have
that fi = πi ◦ f is continuous.

⇐= : Now suppose that ∀ i ∈ I, fi is continuous. We have to show that
given a basic open neighbourhood U ⊆ X, f−1(U) is open in A.
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Consider the following basic open neighbourhood of the product
topology on X

U =
∏
i≤n

Ui ×
∏
i>n

Xi

where n ∈ Z≥0 and Ui ⊆ X is basic open. It is easy to see that
a ∈ f−1(U) ⇐⇒ fi(a) ∈ Ui ∀ i. Hence

f−1(U) = f−1
1 (U1) ∩ f−1

2 (U2) ∩ · · · ∩ f−1
n (Un) ∩

(⋂
i>n

f−1
i (Xi)

)

= f−1
1 (U1) ∩ f−1

2 (U2) ∩ · · · ∩ f−1
n (Un) ∩

(⋂
i>n

A

)
but each f−1

i (Ui) is a subset of A, hence

f−1(U) = f−1
1 (U1) ∩ f−1

2 (U2) ∩ · · · ∩ f−1
n (Un)

Now, f−1(U) is the finite intersection of open sets, hence it is open
itself. Therefore f is continuous.

1.8 The Metric Topology

Definition 1.8.1. Let X be a topological space. A metric on X is a function

d : X ×X → R

satisfying the following three axioms

1. ∀x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y

2. ∀x, y ∈ X, d(x, y) = d(y, x)

3. ∀x, y, z ∈ X, d(x, y) + d(y, z) ≥ d(x, z)

Definition 1.8.2. Let ε > 0. The ε-ball centered at x is the set

Bd(x, ε) = {y | d(x, y) < ε}

In other words, it is the set of all points that are less than ε d-distance away
from x.
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Example 1.8.3. Consider X = Rn. We have the standard Euclidean metric
on X:

d2(x, y) =

(
n∑
i=1

(xi − yi)2

) 1
2

For 0 < p ≤ ∞, the following is also a metric on X

dp(x, y) =

(
n∑
i=1

(xi − yi)p
) 1

p

Example 1.8.4. Let x, y ∈ R2 and define

d1(x, y) = |x1 − y1|+ |x2 − y2|

Then this is a metric on R2 and the open balls are diamond shaped:

Example 1.8.5. Let x, y ∈ R2 and define

d∞ = max1≤i≤n|xi − yi|
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Then this is a metric on R2 and the open balls are square shaped:

Proposition 1.8.6. Let X be a set and d a metric on X. Then

B = {Bd(x, r) |x ∈ X, r > 0}

is a topology basis for the metric topology on X induced by d.

Proof. We prove that B satisfies the axioms of a basis.

1. ∀x ∈ X, ∃B ∈ B such that x ∈ B
Let x ∈ X. Then ∀ r > 0, x ∈ B(x, r) ∈ B

2. ∀B1, B2 ∈ B,∀x ∈ B1 ∩B2,∃B3 ⊆ B1 ∩B2 such that x ∈ B3

Consider x, y ∈ X and the open balls

B1 = B(x, r1)

B2 = B(y, r2)

with r1, r2 > 0.
Now consider z ∈ B1 ∩ B2 and let ε = min{r1 − d(z, x), r2 − d(z, y)}.
We claim that B3 = B(z, ε) ⊆ B1 ∩B2.
Let t ∈ B(z, ε). Then d(t, z) < ε.
By the properties of metrics, we have that

d(x, t) ≤ d(x, z) + d(z, t)

< d(x, z) + ε

< d(x, z) + (r1 − d(x, z))

< r1
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This implies that t ∈ B1. By a similar argument on B2, we have that

d(y, t) ≤ d(y, z) + d(z, t)

< d(y, z) + ε

< d(y, z) + (r2 − d(y, z))

< r2

Hence t ∈ B2 =⇒ t ∈ B1 ∩B2.

Definition 1.8.7. A topological space is said to be metrisable if there exists
a metric d on the set X that induces the topology of X. A metric space is
a metrisable space X together with a specific metric d that gives the topology
of X.

Theorem 1.8.8. The topologies on Rn induced by the euclidean metric d2

and the square metric d∞ are the same as the product topology on Rn.

Proof. Let x, y ∈ R2. It is easy to see that

d∞(x, y) ≤ d2(x, y) ≤
√
nd∞(x, y)

Now, if d2(x, y) < ε then d∞(x, y) < ε. Hence Bd2(x, ε) ⊆ Bd∞(x, ε).
Conversely

d∞(x, y) <
ε√
n

=⇒ d2(x, y) <
√
n d∞(x, y) < ε

Hence Bd∞(x, ε) ⊆ Bd2(x, ε). Since we can excise a basic open d2-ball inside
any d∞-ball and vice-versa, by Lemma 1.2.12, the topologies induced by the
two metrics are equivalent.

It now suffices to show that the topology induced by the square metric is
the same as the product topology on R. Consider

B =
n∏
i=1

(ai, bi)

with a, b ∈ R a basic open neighbourhood for the product topology on Rn.
Consider x = (x1, . . . , xn) ∈ B. ∀ i, ∃ εi such that

(xi − εi, xi − εi) ⊆ (ai, bi)
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Now take ε = min{ε1, . . . , εn} then it is easy to see that Bd∞(x, ε) ⊆ B.
Hence the d∞-topology is finer than the product topology.
Conversely, consider

Bd∞(x, ε) = (x1 − ε, x1 + ε)× · · · × (xn − ε, xn + ε)

where ε > 0 a basis element for the d∞-topology on Rn. We need to find
a basic open neighbourhood B of the product topology such that ∀ y ∈
Bd∞(x, ε), y ∈ B ⊆ Bd∞(x, ε). However this is trivial as Bd∞(x, ε) is itself a
basic open neighbourhood of the product topology. Hence the product topol-
ogy is finer than the d∞-topology meaning the two topologies are equal.

Theorem 1.8.9. Let d̄(a, b) = min{|a−b|, 1} be the standard bounded metric
on R. Let x, y ∈ Rω and consider

D(x, y) = sup

{
d̄(xi, yi)

i

}
Then D is a metric that induces the product topology on Rω

Proof. We first prove that D is a metric.

1. d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y
We have that

d̄(xi, yi)

i
≥ 0

=⇒ D(x, y) = sup

{
d̄(xi, yi)

i

}
≥ 0

A similar argument also confirms the second part.

2. d(x, y) = d(y, x)
We have that

d̄(xi, yi)

i
=
d̄(yi, xi)

i

=⇒ D(x, y) = sup

{
d̄(xi, yi)

i

}
= sup

{
d̄(yi, xi)

i

}
= D(y, x)
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3. d(x, z) ≤ d(x, y) + d(y, z)
We have that

d̄(xi, zi)

i
≤ d̄(xi, yi)

i
+
d̄(yi, zi)

i
≤ D(x, y) +D(y, z)

=⇒ sup

{
d̄(xi, zi)

i

}
≤ D(x, y) +D(y, z)

We now show that the D-topology on Rω is equivalent to the product topol-
ogy. It suffices to show that we can squeeze an open neighbourhood of the
product topology around every point inside an open D-ball and vice versa.
We can then invoke Lemma 1.2.12 to show that the topologies are equivalent.
Consider the ball

BD(x, ε), x ∈ Rω, ε > 0

We must find an open neighbourhood of the product topology U ⊆ Rω such
that U ⊆ BD(x, ε). Take

U =
k∏
i=1

Bd̄i

(
xi,

ε

2

)
×
∏
i≥k

R (1.1)

an open neighbourhood of x ∈ Rω.
Let y ∈ U . We must show that D(x, y) < ε. Hence it suffices to find k such
that

supi≤i≤k

{
d̄(xi, yi)

i

}
+ supi>k

{
d̄(xi, yi)

i

}
< ε

Now,

supi≤i≤k

{
d̄(xi, yi)

i

}
+ supi>k

{
d̄(xi, yi)

i

}
≤ supi≤i≤k

{ r
2i

}
+ supi>k

{
1

i

}
Hence we require that

r

2
+

1

k
< r
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We can then see that

1

k
< r − r

2

=⇒ 1

k
<
r

2

=⇒ k >
2

r

We can therefore take k = d2
r
e and plug it into Equation 1.1 to get the

desired neighbourhood. This shows that the product topology is finer than
the D-topology.
Conversely, consider the basic open neighbourhood U of x ∈ Rω

U =
∏
i≤n

Ui ×
∏
i>n

R

Where each Ui is an open neighbourhood of xi ∈ R.
Let Bd̄i(xi, r) be the open ball defined by d̄ centered at xi with radius r.
Since d̄ is a metric on R, we have that

∃ εi > 0 such that Bd̄i(xi, εi) ⊆ Ui

Let

ε = min1≤i≤n

{εi
i

}
We claim that BD(x, ε) ⊆ U where BD(x, ε) is the D-ball centered at x of
radius r.
Consider y ∈ BD(x, ε). Then D(x, y) < ε.

=⇒ supi≤i≤n

{
d̄i(xi, yi)

i

}
< ε

=⇒ d̄i(xi, yi)

i
< ε, ∀ 1 ≤ i ≤ n

=⇒ d̄i(xi, yi)

i
<
εi
i
, ∀ 1 ≤ i ≤ n

=⇒ d̄i(xi, yi) < εi, ∀ 1 ≤ i ≤ n

=⇒ yi ∈ Bd̄i(xi, εi) ⊆ Ui, ∀ 1 ≤ i ≤ n

=⇒ y ∈ U

This shows that the D-topology is finer than the product topology. Hence
by Lemma 1.2.12, the two topologies are equivalent.
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Theorem 1.8.10. Consider topological spaces Xi each equipped with a metric
di. Let d̄i(x, y) = min{1, di(xi, yi)} where xi, yi ∈ Xi. Then

D(x, y) =
∞∑
i=1

1

2i
d̄i(xi, yi)

is a metric for the product topology on X =
∏

i∈ I Xi

Proof. The proof that D is a metric is left as an exercise to the reader.
We show that the D-topology on X is equivalent to the product topology on
X. Hence it suffices to show that every D-ball contains a basic open neigh-
bourhood of the product topology and vice versa. We can then invoke Lemma
1.2.12 to arrive at the desired result.
Consider the D-ball BD(x, ε). We wish to find a basic open neighbourhood
U of the product topology such that U ⊆ BD(x, ε).
We shall take

U =
∏

1≤i≤n

Bd̄i

(
xi,

ε

2

)
×
∏
i>n

Xi (1.2)

where xi is the ith coordinate of x.
Now consider y ∈ U , we need to show that D(x, y) < ε.

∞∑
i=1

1

2i
d̄i(xi, yi) =

n∑
i=1

1

2i
d̄i(xi, yi) +

∞∑
i=n+1

1

2i
d̄i(xi, yi) < ε
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We therefore need to find n such that the above inequality holds.

n∑
i=1

1

2i
d̄i(xi, yi) +

∞∑
i=n+1

1

2i
d̄i(xi, yi)

<
ε

2

n∑
i=1

1

2i
+

∞∑
i=n+1

1

2i

=
ε

2

(
n∑
i=0

1

2i
− 1

)
+
∞∑
i=0

1

2i
−

n∑
i=0

1

2i

=
ε

2

(
1− 1

2

n+1

1− 1
2

− 1

)
+

1

1− 1
2

−
1− 1

2

n+1

1− 1
2

=
ε

2

(
2− 2

1

2

n+1

− 1

)
+ 2− 2 + 2

1

2

n+1

=
ε

2

(
1− 2

1

2

n+1
)

+ 2
1

2

n+1

=
ε

2
− ε1

2

n+1

+ 2
1

2

n+1

=
ε

2
+

1

2

n+1

(2− ε)

Now assume 0 < ε < 1. We are allowed to do this since if ε > 1, the
neighbourhood we are constructing will still be valid inside the bigger D-
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ball. We now require

ε

2
+

1

2

n+1

(2− ε) < ε

=⇒ 1

2

n+1

<
ε

2

=⇒ 1

2

n+1

<
1

2

=⇒ (n+ 1) log 1
2

(
1

2

)
> log 1

2

(
1

2

)
=⇒ (n+ 1) > log 1

2

(
1

2

)
=⇒ n > log 1

2

(
1

2

)
− 1

=⇒ n > 0

Hence we can substitute n = 1 into Equation 1.2 to give us the desired
result.
Now consider the basic open neighbourhood U. We need to find a D-ball
BD(x, ε) such that BD(x, ε) ⊆ U . We consider

U =
n∏
i=1

Ui ×
∏
i>n

Xi

where Ui is a basic open neighbourhood Ui ⊆ Xi.
Since each d̄i is a metric on Xi, we have that

∃ εi such that Bd̄i(xi, εi) ⊆ Ui

Now take

ε = min1≤i≤n

{εi
2i

}
Now consider y ∈ BD(x, ε), we have to show that y ∈ U .
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D(x, y) < ε

=⇒
∞∑
i=1

1

2i
d̄i(xi, yi) < ε

=⇒
n∑
i=1

1

2i
d̄i(xi, yi) +

∞∑
i=n

1

2i
d̄i(xi, yi) < ε

=⇒
n∑
i=1

1

2i
d̄i(xi, yi) < ε

=⇒ 1

2i
d̄i(xi, yi) < ε, ∀ 1 ≤ i ≤ n

=⇒ 1

2i
d̄i(xi, yi) <

εi
2i
, ∀ 1 ≤ i ≤ n

=⇒ d̄i(xi, yi) < εi, ∀ 1 ≤ i ≤ n

Hence yi ∈ Bd̄i(xi, εi) ∀ 1 ≤ i ≤ n =⇒ y ∈ U . This shows that the D-
topology is finer than the product topology, hence by Lemma 1.2.12, the two
topologies are equal.

1.9 The Quotient Topology

Definition 1.9.1. Consider two topological spaces X and Y and p : X → Y
a surjective map. The map p is said to be a quotient map provided a subset
U ⊆ Y is open in Y if and only of p−1(U) is open in X.

Remark. An equivalent definition would be to have that p is a quotient map
provided a subset C ⊆ Y is closed in Y if and only if p−1(C) is open in X.

Example 1.9.2. Consider the mapping p : X → Y where if U ⊆ X is open
then p(U) ⊆ Y is open. This is called an open map. It therefore follows
from the definition that if p is a surjective continuous map that is open then
it is a quotient map.
The same applies for closed maps.

Example 1.9.3. Let X = [0, 1]∪[2, 3], Y = [0, 2] be subspaces of R. Consider
the map

p(x) =

{
x if x ∈ [0, 1]
x− 1 if x ∈ [2, 3]
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It is easy to see that this function is surjective, continuous and closed. Hence
it is a quotient map. It is not, however, an open map as the open set [0, 1]
of X is not open in Y.

Example 1.9.4. Consider

π1 : R× R→ R

a projection of R2 onto the first coordinte. Indeed, π1 is surjective and con-
tinuous. If U×V is a non-empty basis element for R×R then π1(U×V ) = U
is open in R. Hence π1 is an open map and therefore a quotient map.
π1 is not, however, a closed map. Consider the subset

C = {xy |xy = 1}

of R×R. Indeed this subset is closed but π1(C) = R\{0} is not closed in R.

Definition 1.9.5. Let X be a topological space and ∼ an equivalence relation
on X. The quotient space X/∼ on X is the set

X/ ∼= {[x] |x ∈ X} = {{v ∈ X | v ∼ x} |x ∈ X}

Proposition 1.9.6. Let X be a topological space, ∼ an equivalence relation
on X and X/∼ the corresponding quotient space of X. Consider the quotient
map

p : X → X/ ∼
x 7→ [x]

Now let

τX/∼ = {U ⊆ X/ ∼ | p−1(U) is open in X}

then τX/∼ is a topology on X/∼ called the quotient topology.

Proof. We show that τX/∼ obeys the three axioms of a topology.

1. ∅, X ∈ τX
We have that p−1(∅) = ∅ and p−1(X/ ∼) = X. Hence∅, X/ ∼∈ τX/∼.
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2. ∀ I,∀ {Ui}i∈ I ∈ τx,
⋃
i Ui ∈ τx

Let {Ui}i∈ I be an arbitrary collection of unions of elements in X/∼.
We have that

p−1

(⋃
i

Ui

)
=
⋃
i

p−1(Ui)

By assumption, p−1(Ui) is open in X and arbitrary unions of open sets
of X are open hence

⋃
i p
−1(Ui) is open in X.

3. U1, U2, . . . , Un ∈ τx,
⋂n
i Ui ∈ τx

Let n ∈ N and U1, U2, . . . , Un a finite collection of unions of elements
in X/∼. We have that

p−1

(
n⋂
i

Ui

)
=

n⋂
i

p−1(Ui)

By assumption, p−1(Ui) is open in X and finite intersections of open
sets of X are open hence

⋂n
i p
−1(Ui) is open in X.

Remark. It follows from the proof above that an equivalent definition of the
quotient topology would be that a union of equivalence classes in X/∼ is open
if the union of their elements is open in X.

Proposition 1.9.7. Let X be a topological space, ∼ an equivalence relation-
ship on X, and p : X → X/∼ an open quotient map. Then X/∼ is Hausdorff
if and only if A = {(x, y) ∈ X ×X |x ∼ y} is closed.

Proof.

=⇒ : Assume that X/∼ is Hausdorff. Then ∀ [x], [y] ∈ X/∼,∃Ux, Uy ⊆
X/∼ open neighbourhoods of [x], [y] respectively such that U[x] ∩ U[y] = ∅.
We want to show that A is closed. Hence it suffices to show that (X×X)\A
is open. Now,

(X ×X)\A = {(x, y) ∈ X ×X |x � y}
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Since p(x) = [x] 6= p(y) = [y], by hypothesis, we have two disjoint neighbour-
hoods of p(x) and p(y), namely U[x] and U[y] respectively.
Therefore, since p is a quotient map

p−1(U[x] ∩ U[y]) = ∅
=⇒ p−1(U[x]) ∩ p−1(U[y]) = ∅
=⇒ Ux ∩ Uy = ∅

where Ux and Uy are open neighbourhoods of x and y respectively. Hence
around any point(x, y) we can excise an open neighbourhood, namely Ux×Uy.
Therefore (X ×X)\A is open.

⇐= : Now assume that A is closed. Hence its complement U is open. Since
p is an open map, we have that

(p× p)(U) := (p(x), p(y) | (x, y) ∈ U)

is open in (X/∼)×(X/∼).
Now, the complement V = (X/∼)×(X/∼)\(p × p)(U) = {([y], [y]) | [y] ∈
X/ ∼} is closed.
Consider two equivalence classes [x] 6= [y] ∈ X/ ∼. Then ([x], [y]) /∈ V .
Hence there is an open neighbourhood of ([x], [y]) that does not intersect V.
Such a neighourhood is of the form Ux×Uy where Ux ∩Uy = ∅. Hence X/∼
is Hausdorff.



Chapter 2

Connectedness and
Compactness

2.1 Connected Spaces

Definition 2.1.1. Let X be a topological space. A seperation of X is a pair
U,V of disjoint non-empty open subsets of X where U ∪ V = X. X is called
connected if there does not exist a seperation of X.

Remark. If X = U ∪ V is a seperation then both U and V are clopen.
We can therefore reformulate the definition of connectedness to be that X is
connected if and only if there are no non-trivial clopen subsets.

Example 2.1.2. Consider X equipped with the discrete topology. Then X is
connected if and only if |X| = 1.

Example 2.1.3. Consider X equipped with the discrete topology. Then X is
connected.

Example 2.1.4. Consider A ⊆ R any open or closed subset. Then A is
connected as we can never find two non-empty open sets that seperate A.

Example 2.1.5. Consider Q as a subspace of R and a, b ∈ R\Q. We have
that (a, b) ∩ Q is an open set in the subspace topology. We also have that
[a, b]∩Q is a closed set in the subspace topology. However, U = (a, b)∩Q =
[a, b] ∩Q. U is therefore a clopen set of Q and hence Q is not connected.

Example 2.1.6. Let X be a topological space and Y ⊆ X a subspace.

42
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Lemma 2.1.7. Let X be a topological space and Y ⊆ X a subspace. A
seperation of Y is a pair of disjoint non-empty sets A and B whose union is
Y, neither of which contains a limit point of the other.

Proof.

=⇒ : Suppose that A and B form a seperation of Y. We want to show that
A and B contain no limit points of each other. It follows from the definition
of a seperation that A is a clopen set in Y. The closure of A = A∩Y (where
A is the closure of A in X). Now, since A is closed in Y, we have that

A = A ∩ Y
=⇒ ∅ = A ∩B = A ∩ Y ∩B
=⇒ A ∩B = ∅
=⇒ (A′ ∪ A) ∩B = ∅
=⇒ (A′ ∩B) ∪ (A ∩B) = ∅
=⇒ A′ ∩B = ∅

Hence B contains no limit points of A. A similar argument can be applied to
B.

⇐= : Now assume that A and B are disjoint non-empty sets whose union
is Y, neither of which contains a limit point of the other. We have that
A∩B = ∅ and A∩B = ∅. Hence A∩ Y = A and B ∩ Y = B. This implies
that A and B are closed in Y and since A = Y \B and B = Y \A, they are
both open as well.

Lemma 2.1.8. Let X be a topological space, Y ⊆ X a subspace and C and
D a seperation of X. If Y is connected then it lies entirely within C or D.

Proof. Suppose that Y ∩ C 6= ∅ and Y ∩ D 6= ∅. Since C and D are both
open in X, by the definition of the subspace topology, they are both open
in Y. Since we have that (Y ∩ C) ∪ (Y ∩ D) = Y we have that Y ∩ C and
Y ∩D form a seperation of Y. This contradicts the fact that Y is connected
and hence either Y ∩C = ∅ or Y ∩D = ∅. Therefore, Y lies entirely within
C or D.

Theorem 2.1.9. Let X be a topological space. The union of a collection of
connected subspaces of X that have a point in common is connected.
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Proof. Let {Ui}i∈ I be a collection of connected subspaces of X such that⋂
i∈ I Ui = p for some point p. We want to show that there exists no sepera-

tion of U =
⋃
i∈ I Ui.

Suppose A and B form a seperation of U. We have that p ∈ A or p ∈ B.
Suppose, without loss of generality, that p ∈ A. Since p ∈ A and ∀ i, p ∈ Ui,
we have that ∀ i, Ui ⊆ A. If not then ∃x ∈ Ui such that x ∈ B, contradicting
the fact that Ui is connected.
Since U =

⋃
i∈ I Ui and ∀ i, Ui ⊆ A we then have that B = ∅. This contra-

dicts the fact that B is non-empty hence U must be connected.

Theorem 2.1.10. Let X be a topological space and Y ⊆ X a subspace. If
A ⊆ B ⊆ A then B is also connected.

Proof. Suppose X and Y form a seperation of B. Then, since A is connected,
A ⊆ X or A ⊆ Y . Suppose, without loss of generality, that A ⊆ X. Then,
A ⊆ X. Hence we have that B ⊆ A ⊆ X. Since X and Y are disjoint, B
cannot intersect Y which contradicts the fact that Y is a non-empty subset
of B. Hence B is connected.

Theorem 2.1.11. Let X and Y be topological spaces and f : X → Y a
continuous map. If X is connected then f(X) ⊆ Y is also connected.

Proof. We want to show that the image space Z = f(X) is connected. If
we restrict the range to Z then the map is still continuous and is surjective.
Hence we consider g : X → Z. Suppose C and D form a seperation of Z.
Then by definition C ∪D = Z,C ∩D = ∅ and C and D both non-empty.
Since f is a continuous map, we have that g−1(C) and g−1(D) are both open
in X.
Now,

g−1(C ∪D) = g−1(Z)

=⇒ g−1(C) ∪ g−1(D) = X

g−1(C ∩D) = g−1(∅)

=⇒ g−1(C) ∩ g−1(D) = ∅

We also have that since g is surjective, g−1(C) and g−1(D) are non-empty.
Hence g−1(C) and g−1(D) form a seperation of X, contradicting the fact
that X is connected. Therefore, the image of X under a continuous map is
connected.
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Theorem 2.1.12. Let {Xi}1≤i≤n be a finite collection of connected spaces.
Then the finite cartesian product X =

∏n
i=1Xi is also connected.

Proof. We shall prove the theorem using induction. For the basis case, we
consider the product of two connected spaces X and Y.
Consider the point (a, b) ∈ X×Y . The horizontal slice X×{b} is connected
as it is homeomorphic to X. The vertical slices {x} × Y are also connected
as they are homeomorphic to Y.
Hence each T-shaped space

Tx = (X × {b}) ∪ ({x} × Y )

is connected as it is the union of two connected spaces that have the point
(x, b) in common.
Now consider

T =
⋃
x∈X

Tx

of all such T-shaped spaces. This is also a connected space as it is the
union of connected spaces that all contain the point (a, b) in common. Since
T = X × Y , we have that X × Y is a connected space.
Now assume that the theorem is true for n = k. We prove that it is true for
n = k + 1.
We have that

X1 × · · · ×Xn1 = (X1 × · · · ×Xn)×Xn+1

By assumption, X1 × · · · ×Xn) and Xn+1 are connected. By the basis case,
their product is connected as the product of two connected spaces. Hence
any finite cartesian product of connected spaces is connected.

Proposition 2.1.13. Consider X = Rω equipped with the box topology. Then
X is not a connected space.

Proof. We show that Rω has a seperation consisting of bounded and un-
bounded sequences of real numbers.
Let U ⊆ Rω be the subset of Rω consisting of bounded sequences of real
numbers. Then given any x ∈ Rω bounded sequence, we have that∏

i

(x1 − 1, x1 + 1)× (x2 − 1, x2 + 1)× . . .



CHAPTER 2. CONNECTEDNESS AND COMPACTNESS 46

is an open neighbourhood for x. Hence U is an open set in Rω.
Now consider V ⊆ Rω the set of unbounded sequences of real numbers. Given
any x ∈ Rω, we have that∏

i

(x1 − 1, x1 + 1)× (x2 − 1, x2 + 1)× . . .

is also an open neighbourhood of x. Hence V is also open in Rω.
Since U and V are obviously non-empty and disjoint and also open, it follows
that they form a seperation of Rω in the box topology.

Proposition 2.1.14. Consider X = Rω equipped with the product topology.
Then X is a connected space.

Proof. Let R̃n denote the subspace of Rω consisting of sequences x = (x1, x2, . . . )
such that xi = 0 for i > n. Then R̃n is clearly homeomorphic to Rn and
hence connected. Now denote R∞ =

⋃∞
i=1 R̃n. This set is also connected as

it is the union of connected spaces all with the point (0, 0, . . . ) in common.
It now suffices to show that Rω is the closure of R∞ and thus by a previous
theorem, Rω is connected.
Let a = (a1, a2, . . . ) ∈ Rω. We show that every basic neighbourhood of a
intersects R∞. Let

U =
∏

1≤i≤k

Ui ×
∏
i≥k

R

be a basic neighbourhood of a where each Ui is a basic open neighbourhood
of ai.
Consider the point

x = (a1, . . . , an, 0, 0, . . . )

of R∞. Then x ∈ U since ai ∈ Ui ∀ i and 0 ∈ R ∀ i ≥ k. Hence Rω is the
closure of R∞ and is thus closed.

2.2 Connected Subspaces of the Real Line

Theorem 2.2.1. (Intermediate Value Theorem) Let X be a connected topo-
logical space and f : X → R a continuous map. Consider a, b ∈ X and
r ∈ R such that f(a) ≤ r ≤ f(b). Then there exists a point c ∈ X such that
f(c) = r.
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Proof. Assume that there is no point c ∈ X such that f(c) = r. Now consider
the two sets

A = f(X) ∩ (∞, r)
B = f(X) ∩ (r,∞)

They are obviously disjoint and they are non-empty as f(a) ⊆ A and f(b) ⊆
B. We can also see that A and B are open in f(X) being the intersection of
f(X) with an open set of R. Since there is no point in X with r its image, we
see that f(X) = A∪B. Hence A and B form a seperation of f(X). However
X is connected and this contradicts the fact that the image of a connected
set under a continuous map is connected. Hence there must be a point c ∈ X
such that f(c) = r.

Definition 2.2.2. Let X be a space and x, y ∈ X. A path from x to y
is a continuous map f : [a, b] → X where a, b ∈ R such that f(a) = x and
f(b) = y. A space X is said to be path connected if every pair of points of
X can be joined by a path in X.

Theorem 2.2.3. Let X be a topolgical space. If X is path connected then it
is connected.

Proof. Suppose that A and B form a seperation of X. Let f : [a, b]→ X be a
path in X. Since [a, b] is connected and f is a continuous map, it follows that
f([a, b]) is also connected. Hence f([a, b]) lies entirely within A and B. There
is therefore no path connecting a point in A to a point in B, contradicting
the fact that X is path connected. Hence X must be connected.

Example 2.2.4. Any open or closed ball in Rn is path connected.

Proposition 2.2.5. Consider the set

S =

{
(x, sin

(
1

x

) ∣∣∣∣ 0 < x ≤ 1

}
∪ ({0} × [−1, 1])

Then S is connected but not path connected. It is called the topologist’s
sine curve.

Proof. S is a connected subset of R2. We want to show that S is not path-
connected.
Assume that there exists a path f : [0, 1] → S from the origin to another



CHAPTER 2. CONNECTEDNESS AND COMPACTNESS 48

point in S. Let f(t) = (x(t), y(t)). Then x(0) = 0 and x(t) > 0, y(t) = sin
(

1
x

)
for t > 0.
We shall show that there exists a sequence of points tn → 0 such that y(tn) =
(−1)n. Then y(tn) doesn’t converge, contradicting the continuity of f .
Let n > 0 and choose u such that 0 < u < x

(
1
n

)
and sin

(
1
n

)
= (−1)n. We

can then apply the intermediate value theorem to find tn such that 0 < tn <
1
n

and x(tn) = u.

2.3 Connected Components

Definition 2.3.1. Let X be a topological space and define an equivalence
relation on X by setting x ∼ y if there is a connected subspace of X containing
both x and y. The equivalence classes are called the connected components
of X.

Theorem 2.3.2. Let X be a topological space. The connected components of
X are connected disjoint subspaces of X whose union is X. Each non-empty
connected subspace of X intersects only one connected component of X.

Proof. Since the components are simply equivalence classes, it follows that
they are disjoint and their union is X.
Now assume that there exists a connected subspace A ⊆ X that intersects
two connected components C1 and C2. Let x ∈ C1 and y ∈ C2 be two such
intersections. By definition of, x ∼ y hence they are in the same connected
component. This is obviously a contradiction hence each connected subspace
must intersect at most one connected component. It remains to show that
each connected component is indeed connected.
Choose x0 ∈ C. ∀x ∈ C, x0 ∼ x hence there is a connected subspace Ax
containing both x0 and x. By the result just proved, we have that Ax ⊂ C.
Hence

C =
⋃
x∈C

Ax

Since the each Ax is connected and they each share the point x0 in common,
their union is connected.

Definition 2.3.3. Let X be at topological space and define an equivalence
relation on X by setting x ∼ y if there is a path in X from x to y. The
equivalence classes are called the connected components of X.
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Theorem 2.3.4. Let X be a topological space. The path connected compo-
nents of X are path-connected disjoing subspaces of X whose union is X. Each
non-empty subspace of X intersects at most one path-connected component.

Proof. The proof is left as an exercise to the reader. It follows the same
argumentation as the previous proof.

Example 2.3.5. Consider Q as a subspace of R. The connected components
of Q are single points.

Example 2.3.6. Consider the topologist’s sine curve. This set has one
connected component (the whole set) and two path connected components:
{0} × [−1, 1] and

{
(x, sin

(
1
x

) ∣∣ 0 < x ≤ 1
}

.

2.4 Compact Spaces

Definition 2.4.1. Let X be a space. A collection C of subsets of X is said to
cover X or be a covering of X if the union of elements in A is equal to X.
A is said to be an open covering of X if it consists of open subsets of X.

Definition 2.4.2. A topological space X is said to be compact if every open
covering A of X contains a finite subcollection that also covers X.

Example 2.4.3. The real line R is not compact. Consider the open covering
of R

A = {(n, n+ 2) |n ∈ Z}

This covering contains no finite subcollection that covers R.

Example 2.4.4. Consider the following subsoace of R:

X = {0} ∪
{

1

n

∣∣∣∣n ∈ Z+

}
Given an open covering A of X, there is an element U ∈ A containing 0.
Since U is open, it contains all but finitely many of the points 1

n
. For each

such point, choose an element of A that contains in. The collection consisting
of these elements of A along with U is a finite subcollection of A that covers
X. Hence this subset is compact.



CHAPTER 2. CONNECTEDNESS AND COMPACTNESS 50

Example 2.4.5. Any finite topological space X is necessarily compact as
every open covering of X is finite.

Example 2.4.6. Consider the interval (0, 1) and the open covering

A =

{(
1

n
, 1

) ∣∣∣∣n ∈ Z+

}
This covering contains no finite subcollection covering (0, 1) hence (0, 1) is
not compact.

Definition 2.4.7. Let X be a topological spoce and Y ⊆ X a subspace. Then
a collection A of subsets of X is said to cover Y if the union of its elements
contains Y.

Lemma 2.4.8. Let X be a topological space and Y ⊆ X a subspace. Then
Y is compact if and only if every covering of Y by sets open in X contains a
finite subcollection covering Y.

Proof.

=⇒ : Assume that Y is compact. Consider the open covering A = {Ai}i∈ I
of Y by sets open in X. Then the collection {Ai ∩ Y | i ∈ I} is a
covering of Y by sets open in Y. Hence a finite subcollection

{Ai1 ∩ Y,Ai2 ∩ Y, . . . , Ain ∩ Y }

is a covering of Y by sets open in Y. This implies that

{Ai1 , Ai2 , . . . , Ain}

is a subcollection of A that covers Y.

⇐= : Now suppose that every covering of Y by sets open in X contains
a finite subcollection covering Y. We want to show that Y is compact.
Let A′ = {Ai} be a covering of Y by sets open in Y. For each i, choose
a set Ai open in X such that A′i = Ai ∩ Y .
The collection A = {Ai} is a covering of Y by sets open in X. By
assumption, some finite subcollection {Ai1 , . . . ,Ain} covers Y.
Then {A′i1 , . . . ,A

′
in} is a finite subcollection of A′ that covers Y.

Hence Y is compact.
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Theorem 2.4.9. Let X be a compact topological space. Then every closed
subspace of is compact.

Proof. Let X be a compact topological space and Y ⊆ X a closed subspace.
Given a covering A of Y by sets open in X, we can form an open covering B
of X by adjoining the open set X\Y to A:

B = A ∪ (X\Y )

Since X is a compact space, some finite subcollection of B covers X. If the
subcollection contains X\Y , discard X\Y . The resulting collection is a finite
collection of A that covers Y.

Theorem 2.4.10. Let X be a Hausdorff space. Then every compact subspace
of X is closed.

Proof. Let X be a Hausdorff space and consider a compact subspace Y ⊆ X.
We want to show that Y is closed. This is equivalent to proving that X\Y
is open. It is therefore sufficient to show that given a point xo ∈ X\Y , every
neighbourhood of x0 is disjoint from Y.
Given a point y ∈ Y , consider the disjoint neighbourhoods Uy and Vy of x0

and y, the existence of which is guaranteed by the fact that X is Hausdorff.
The collection {Vy | y ∈ Y } is a covering of Y by sets open in X. Therefore,
finitely many of them {Vy1 , . . . , Vyn} cover Y.
The open set

V = Vy1 ∪ · · · ∪ Vyn

contains Y and is disjoint from the open set

U = Uy1 ∩ · · · ∩ Uyn

where each Uyi is the corresponding neighbourhood of xo. Indeed if z ∈
V then z ∈ Vyi for some i, hence z /∈ Uyi =⇒ z /∈ U . Hence U is a
neighbourhood of x0 disjoint from Y. Thus Y is closed.

Theorem 2.4.11. The image of a compact space under a continuous map
is compact.

Proof. Let f : X → Y be a continuous map where X is a compact topological
space. We want to show that for every open covering of f(X) ⊆ Y , there
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exists a finite subcollection that covers f(X).
Let A be a covering of the f(X) by sets open in Y. The collection

{f−1(A) |A ∈ A}

is a collection of sets covering X. They are open as f is continuous. Hence
finitely many of them, say f−1(A1), . . . , f−1(An) cover X. Hence the sets
A1, . . . , An cover f(X).

Theorem 2.4.12. Let X and Y be two topological spaces and f : X → Y a
bijective continuous function. If X is compact and Y is Hausdorff then f is a
homeomorphism.

Proof. It is sufficient to show that the image of a closed set of X under f is
closed in Y hence showing that f−1 is continuous. If A is closed in X then A
is compact by a previous theorem. Hence by the previous theorem, f(A) is
also compact. By another theorem, we see that since Y is Hausdorff, f(A) is
closed in Y.

Lemma 2.4.13. (Tube Lemma)
Consider the product space X × Y where Y is compact. If N is an open set
of X × Y containing the slice {x0}× Y of X × Y then N contains some tube
W × Y about {x0} × Y where W is a neighbourhood of xo ∈ X.

Proof. Let X be a topological space and Y a compact space, x0 ∈ X and
N ⊆ X × Y an open set containing the slice {x0} × Y .
Since the slice {x0} × Y is homeomorphic to Y and Y is compact, it follows
that {x0}×Y is also compact. We can therefore cover {x0}×Y with finitely
many basis elements, say

U1 × V1, . . . , Un × Vn

Now define

W = U1 ∩ · · · ∩ Un

The set W is open as it is the finite intersection of open sets and it contains
x0.
We show that the sets Ui × Vi actually cover W × Y .
Let (x, y) ∈ W × Y . Consider the point (x0, y) ∈ {x0} × Y having the same
y-coordinate. (x0, y) ∈ Ui × Vi for some i. Hence y ∈ Vi. But x ∈ Ui ∀ i
thus (x, y) ∈ Ui × Vi. Since all the sets Ui × Vi lie in N and since they cover
W × Y , the tube also lies in N.
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Theorem 2.4.14. The product of finitely many compact spaces is compact.

Proof. We shall prove the theorem using induction. For the basis case, we
prove the theorem for the product of two spaces.
Let A be an open covering of X × Y . Given x0 ∈ X, the slice {x0} × Y
is compact as it is homeomorphic to the compact space Y. It can therefore
be covered by finitely many elements A1, . . . , Am of A. Their union N =
A1 ∪ · · · ∪ Am is an open set containing {x0} × Y .
By the Tube Lemma, the open set A contains a tube W ×Y about {x0}×Y
where W is open in X. Then W × Y is covered by finitely many elements
A1, . . . , Am of A.
Hence ∀x ∈ X, we can choose a neighbourhood Wx of x such that the tube
Wx × Y can be covered by finitely many elements of A. The collection of
all such Wx is an open covering of X. By compactness of X, there exists a
finite subcollection W1, . . . ,Wk covering X. The union of the tubes W1 ×
Y, . . . ,Wk × Y is all of X × Y . Since each one can be covered by finitely
many elements, ther union (and hence X×Y ) can also be covered by finitely
many elements.
Now assume that the theorem is true for X1 × · · · × Xn. We want to show
that it holds for X1 × · · · × Xn+1. X1 × · · · × Xn+1 is homeomorphic to
(X1 × · · · × Xn) × Xn+1. Since this is the product of two compact spaces
X1×· · ·×Xn and Xn+1, it follows by the basis case that their product is also
compact. Hence by induction, the product of finitely many compact spaces
is compact.

Definition 2.4.15. A collection C of subsets of a space X is said to have the
finite intersection property if for every finite subcollection {C1, . . . , Cn},
their intersection is nonempty.

Remark. Another definition of compactness is if for every collection C of
closed sets in X that has the finite intersection property, the intersection⋂
C ∈C is non-empty. This follows from the properties of open and closed sets

and the De Morgan Law.

2.5 Compact Subspaces of the Real Line

Theorem 2.5.1. A subspace A of Rn is compact if and only if it is bounded
in the Euclidian metric d or the square metric ρ.
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Proof. It suffices to consider only the metric ρ as the inequalities

ρ(x, y) ≤ d(x, y) ≤
√
nρ(x, y)

=⇒ : Suppose that A is compact. Then by Theorem 2.4.10, A is closed.
Now consider the collection of open sets

B = {Bρ(0,m) |m ∈ Z+}

whose union is all of Rn. Since A is compact, some finite subcollection
of B must cover A. It follows that A ⊆ Bρ(0,M) for some M.
Therefore, for any two points x and y of A we have that ρ(x, y) ≤ 2M .
Thus, A is bounded under ρ.

⇐= : Now assume that A is closed and bounded under ρ. Suppose that
ρ(x, y) ≤ N for every pair x, y of points of A. Choose a point x0 ∈ A
and let ρ(x0, 0) = b. The triangle inequality implies that
ρ(x, 0) ≤ N + b ∀x ∈ A. If P = N + b then A is a subset of the
cube [−P, P ]n which is compact. Since A is closed, it follows that it
is also compact.

Theorem 2.5.2. (Extreme Value Theorem)
Let X be a topological space and f : X → R a continuous function. If X is
compact then there exists points c, d ∈ X such that f(c) ≤ f(x) ≤ f(d) ∀x ∈
X.

Proof. Since f is a continuous map and X is compact, it follows that A =
f(X) ⊆ R is a compact subset. We will show that A has a maximal element
M and a minimal element m. We have that m = f(c) and M = f(d) for
some points c, d ∈ X.
Assume that A has no maximal element. Then the collection

{(−∞, a) | a ∈ A}

forms an opening covering of A. Since A is compact, some finite subcollection

{(−∞, a1), . . . , (−∞, an)}

covers A. If ai is the largest of the elements a1, . . . , an then ai nellongs to none
of these sets, contrary to the fact that it forms part of a finite subcovering
of A. Hence A must have a maximal element. A similar argument can be
applied to show that A must have a minimal element.
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Definition 2.5.3. Let (X, d) be a metric space and A ⊆ X a subset. For all
x ∈ X, we define the distance from x to A by the equation

d(x,A) = infd(x, a) | a ∈ A

Definition 2.5.4. Let (X, d) be a metric space and A ⊆ X be a bounded
subset. We define the diametre of A to be

diam(A) = sup{d(a1, a2) | a1, a2 ∈ A}

Lemma 2.5.5. (Lebesgue number lemma)
Let A be an open covering of the metric space (X, d). If X is compact, there
is a δ > 0 such that for each subset of X having diametre less than δ, there
exists an element of A covering it. The number δ is called a Lebesgue
number for the covering A.

Proof. Let A be an open covering of X. If X is an element of A then any
positive nunber is a Lebesgue number for A and we are done. Hence assume
X is not an element of A.
Choose a finite subcollection {A1, . . . , An} of A that covers X. For each i,
set Ci = X\Ai. Now define f : X → R by letting f(x) be the average of the
numbers d(x,Ci):

f(x) =
1

n

n∑
i=1

d(x,Ci)

First we show that f(x) > 0 ∀x ∈ X. Given x ∈ X, choose i such that
x ∈ Ai. Now choose ε so that the ε-neighbourhood of x lies in Ai. Then
d(x,Ci) ≥ ε so that f(x) ≥ ε

n
.

Since f is continuous, it must have a minimum value δ. We shall show that
δ is indeed the Lebesgue number for A. Let B be a subset of X of diametre
less than δ. Now choose a point x0 ∈ B. Then B lies in the δ-neighbourhood
of x0. We have that

δ ≤ f(x0) ≤ d(x0, Cm)

where d(x0, Cm) is the largest of the numbers d(x0, Ci). Then the δ-neighbourhood
of x0 is contained in the element Am = X\Cm of the covering A.
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Definition 2.5.6. A function fron the metric space (X, dX) to the metric
space (Y, dY ) is said to be uniformly continuous if given ε > 0, there is
a δ > 0 such that for every pair of points x0, x1 ∈ X,

dX(x0, x1) < δ =⇒ dY (f(x0), f(x1)) < ε

Theorem 2.5.7. (Uniform Continuity Theorem)
Let f : X → Y be a continuous map of the compact metric space (X, dX) to
the metric space (Y, dY ). Then f is uniformly continuous.

Proof. Let ε > 0 and take the open covering of Y by balls B(y, ε
2
). Let A be

an open covering of X given by the inverse images of these balls under f. Now
choose δ to be a Lebesgue number for the covering A. Then if x1, x2 ∈ X are
two points such that dX(x1, x2) < δ, the two point set {x1, x2} has diameter
less than δ so that its image {f(x1), f(x2)} lies in some ball B(y, ε

2
). Then

dY (f(x1), f(x2)) < ε. Hence f is uniformly continuous.

2.6 Local Compactness

Definition 2.6.1. Let X be a topological space. We say that X is locally
compact at x if there is some compact subspace C of X that contains a
neighbourhood of x. If X is locally compact at all of its points, X is said to
be locally compact.

Example 2.6.2. The real line R is locally compact. Indeed given any point
x ∈ R we can take the open neighbourhood (x − 1, x + 1) which lies in the
compact subspace [x− 1, x+ 1].

Example 2.6.3. The rationals Q as a subspace of R are not locally com-
pact. Indeed any compact subspace of Q is necessarily a single point. We
cannot squeeze an open neighbourhood of Q around a point inside any of
these compact subspaces.

Example 2.6.4. The space Rn is locally compact. Indeed, consider a point
x ∈ Rn. Then x ∈ (x1− 1, x1 + 1)× · · · × (xn− 1, xn + 1) which is contained
in the compact subspace [x1 − 1, x1 + 1]× · · · × [xn − 1, xn + 1].

Example 2.6.5. The space Rw is not locally compact. Take a point x ∈ Rw.
Then x ∈ (x1 − 1, x1 + 1) × · · · × (xn − 1, xn + 1) ×

∏
i>nR. If this open
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neighbourhood were contained in a compact subspace, then its closure

[x1 − 1, x1 + 1]× . . . [xn − 1, xn + 1]×
∏
i>n

R

would be compact which it is not.


