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1 G-modules

Throughout this section, G shall be a finite group written multiplicatively.

1.1 Definitions

Definition 1.1.1. Let A be an abelian group. We say that A is a G-module if there exists
a function ρ : G× A→ A such that for all σ, τ ∈ G and a, b ∈ A we have

1. ρ(1, a) = a

2. ρ(σ, a+ b) = ρ(σ, a) + ρ(σ, b)

3. ρ(στ, a) = ρ(σ, ρ(τ, a))

Such a function is referred to as a G-action and we shall simply write aσ for ρ(σ, a).
Morevoer, we write AG for the subgroup of A left fixed by the action of G.

Definition 1.1.2. Let A and B be G-modules. We say that a homomorphism of groups
φ : A→ B is a G-homomorphism if it commutes with the action of G: for all a ∈ A and
σ ∈ G we have φ(a)σ = φ(aσ).

Definition 1.1.3. We define the category of G-modules, denoted Gmod, to be the one
with objects the G-modules and morphisms the G-homomorphisms.

Proposition 1.1.4. Let A be a G-module and H a subgroup of G. Then

1. A is an H-module.

2. If H is normal in G then AH is a G/H-module.

Proof.

Part 1: This is immediate upon realising the action of H on A is given by the restriction of
the action of G on A to the subgroup H.

Part 2: We first define the action of G/H on AH as follows. Given a ∈ AH and [σ] ∈ G,
define a[σ] to be aσ. The fact that this satisfies the axioms of a G/H-action is immediate
by construction so it suffices to show that this action is indeed well-defined. To this end,
suppose that [σ] = [τ ] for some σ, τ ∈ G. By definition, τ = σχ for some χ ∈ H. Then

a[τ ] = a[σχ] = aσχ = (aχ)σ = aσ = a[σ]

1.2 Group Rings

Definition 1.2.1. Let R be a commutative ring. We define the group ring of G over R,
denoted R[G], to be the free R-module on G. In other words,

R[G] =

{∑
σ∈G

rσσ

∣∣∣∣∣ rσ ∈ R
}

Proposition 1.2.2. The category Gmod is isomorphic to the category ModZ[G] of Z[G]-
modules.
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Proof. It suffices to exhibit a functor F : Gmod → ModZ[G] with an inverse. To this end,
fix G-modules A,B and a G-homomorphism ϕ : A→ B. Define FA to be the Z[G]-module
with Z[G]-multiplication given by(∑

σ∈G

nσσ

)
· a =

∑
σ∈G

nσa
σ

for
∑

σ∈G nσσ ∈ Z[G] and a ∈ A. Define F (A
φ−→ B) to be exactly φ as a homomorphism of

abelian groups. Then the defining property of a G-homomorphism induces the structure of
a Z[G]-module homomorphism on φ.

To see that F has an inverse, we define F−1 : ModZ[G] → Gmod as follows. Fix a Z[G]-
module M . We can easily make M into a G-module as follows: given σ ∈ G and m ∈ M ,
let mσ = σ ·m where the latter is the Z[G]-module multiplication of σ ∈ Z[G] with m. Let
F−1M be this G-module. Given a Z[G]-module homomorphism ϕ : M → N , let F−1ϕ be
the induced homomorphism of G-modules. It is guaranteed to to be a G-module by the
defining properties of a Z[G]-module homomorphism.

Definition 1.2.3. Let A be a G-module. We say that A is Z[G]-free (or simply G-free) if
A admits a decomposition into a direct sum of G-submodules of A that are all isomorphic
to Z[G]. In other words, we can write

A =
⊕
i∈I

Z[G]

for some indexing set I.

Definition 1.2.4. We define the augmentation of Z[G] to be the homomorphism

ε : Z[G]→ Z∑
σ∈G

nσσ 7→
∑
σ∈G

nσ

Its kernel

IG =

{∑
σ∈G

nσσ

∣∣∣∣∣ ∑
σ∈G

nσ = 0

}

is referred to as the augmentation ideal of Z[G].

Definition 1.2.5. The element NG =
∑

σ∈G σ of Z[G] is called the norm of Z[G]. Further-
more, we define the coaugmentation of Z[G] to be the homomorphism

µ : Z→ Z[G]

n 7→ n ·NG

Its cokernel is denoted

JG = Z[G]/ZNG

where ZNG is the coaugmentation ideal of Z[G].

Proposition 1.2.6.
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1. IG is the free abelian group on the set {σ − 1 | 1 6= σ ∈ G } and the short exact sequence

0 IG Z[G] Z 0

splits.

2. JG is the free abelian group on the set {σ (mod ZNG) | 1 6= σ ∈ G } and the short
exact sequence

0 Z Z[G] JG 0

splits.

Proof.

Part 1: First observe that, given x ∈ IG, we have

x =
∑
σ∈G

nσσ =

(∑
σ∈G

nσσ

)
−

(∑
σ∈G

nσ

)
=
∑
σ∈G

nσ(σ − 1) =
∑

16=σ∈G

nσ(σ − 1)

So we get a surjective mapping onto the free abelian group given in the Proposition. To see
that this mapping is injective, observe that∑

16=σ∈G

nσσ = 0 ⇐⇒ nσ = 0 for all 1 6= σ ∈ G

⇐⇒ x = 0

To see that the exact sequence splits, note that

x =
∑
σ∈G

nσσ =
∑
σ∈G

nσ(σ − 1) +
∑
σ∈G

nσ

which immediately yields an isomorphism Z[G] ∼= IG ⊕ Z.

Part 2: This follows immediately upon dualising the proof for Part 1.

Corollary 1.2.7. We have that IG = AnnZNG and ZNG = Ann IG.

Proof. Fix
∑

σ∈G nσσ ∈ Z[G]. We have that(∑
σ∈G

nσσ

)
·NG =

∑
σ∈G

nσ(σ ·NG) =
∑
σ∈G

nσNG =

(∑
σ∈G

nσ

)
·NG = 0

if and only if
∑

σ∈G nσ = 0 which is exactly what it means for
∑

σ∈G nσσ ∈ Z[G] ∈ IG.
To prove the second part, we note that by Proposition 1.2.6 we have that∑

τ∈G

nττ ∈ Ann(IG) ⇐⇒

(∑
τ∈G

nττ

)
· (σ − 1) = 0 (for all 1 6= σ ∈ G)

⇐⇒
∑
τ∈G

nττσ =
∑
τ∈G

nττ (for all 1 6= σ ∈ G)

⇐⇒ nτ = n1 (for all τ ∈ G)

⇐⇒
∑
τ∈G

nττ = n1 ·NG ∈ ZNG
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Definition 1.2.8. Let A be a G-module. Then we define the norm group of A to be the
G-submodule of A given by

NGA = {NGa | a ∈ A }

Furthermore, we define the following G-submodules of A:

NGA = { a ∈ A | NGa = 0 }

IGA =

{∑
σ∈G

nσ(aσσ − aσ)

∣∣∣∣∣ aσ ∈ A
}

We observe that NGA ⊆ AG and IGA ⊆ NGA so we get factor groups AG/NGA and NGA/IGA

1.3 Hom-Sets

Definition 1.3.1. LetA andB beG-modules. Then the hom-set Hom(A,B) = AbGrp(A,B)
consisting of all morphisms of abelian groups between A and B is a G-module with the action
defined as follows. Given σ ∈ G and a homomorphism φ : A→ B, define

φσ = σ ◦ φ ◦ σ−1

We write HomG(A,B) = Gmod(A,B) for the subgroup of Hom(A,B) consisting of all G-
homomorphisms between A and B.

Proposition 1.3.2. Let A and B be G-modules. Then HomG(A,B) = Hom(A,B)G.

Proof. We have that

φ ∈ Hom(A,B)G ⇐⇒ φσ = φ (for all σ ∈ G)

⇐⇒ σ ◦ φ ◦ σ−1 = φ (for all σ ∈ G)

⇐⇒ σ ◦ φ = φ ◦ σ (for all σ ∈ G)

⇐⇒ φ ∈ HomG(A,B)

Proposition 1.3.3. The hom-functor

HomG(−,−) : Gop
mod ×Gmod → Gmod

is additive in both arguments. That is to say, given any family {Ai }i∈I of G-modules and
an arbitrary G-module X, we have canonical isomorphisms

HomG

(⊕
i∈I

Ai, X

)
∼=
∏
i∈I

HomG(Ai, X)

HomG

(
X,
∏
i∈I

Ai

)
∼=
∏
i∈I

HomG(X,Ai)

Moreover, if X can be taken to be finitely generated then

HomG

(
X,
⊕
i∈I

Ai

)
∼=
⊕
i∈I

HomG(X,Ai)
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Proof. This is immediate upon realising that the hom-functor is contravariant in the first
argument and covariant in the second; along with the fact that hom-functors preserve all
limits in both arguments. In particular, the first argument takes colimits to limits.

Corollary 1.3.4. Let X be a G-free module. Then

HomG(X,−) : Gmod → Gmod

is an exact functor.

Proof. Suppose we have an exact sequence

0 A B C 0
φ ψ

in Gmod. Write

X =
⊕
i∈I

Γi

with each Γi ∼= Z[G]. By Proposition 1.3.3, we have that

HomG(X,A) ∼=
∏
i∈I

HomG(Γi, A)

Denote Ai = HomG(Γi, A) ∼= HomG(Z[G], A). Now, observe that we have an isomorphism

f : HomG(Z[G], A)→ A

φ 7→ φ(1)

The same argumentation yields similar groups Bi and Ci so we get a short exact sequence

0 Ai Bi Ci 0

Since Gmod = ModZ[G] has the property that taking direct sums is an exact functor, we
get an exact sequence

0 Hom(X,A) Hom(X,B) Hom(X,C) 0

as desired.

Proposition 1.3.5. Let D be a Z-module. Then any exact sequence

· · · Xq−1 Xq Xq+1 · · ·dq dq+1

of Z-free modules induces an exact sequence

· · · Hom(Xq−1, D) Hom(Xq, D) Hom(Xq+1, D) · · ·
d∗q d∗q+1

of hom-groups.

Proof. Denote Cq = ker dq = im dq+1. Then we have an exact sequence

0 Cq Xq Cq−1 0

Observe that Cq−1 is a free subgroup of Xq−1 so we get a natural homomorphism ε : Cq−1 →
Xq satisfying dq ◦ ε = idCq−1 . The Splitting Lemma for ModZ then implies that this exact
splits and Xq = Cq

⊕
Cq−1.

Now suppose that f ∈ ker d∗q+1. Then f also vanishes on Cq and so f descends to a
homomorphism g′ : Cq−1 → D on Cq−1 with f = g′ ◦ dq. Now, Cq−1 is a direct summand of
Xq−1 and so g′ extends to a homomorphism g : Xq−1 → D such that f = g ◦ dq. But this is
the image of f under the map d∗q so f ∈ im d∗q.

Conversely, suppose that f ∈ im d∗q and let f ′ be such that f = d∗q(f
′) = f ′ ◦ dq. Then

d∗q+1(f) = f ◦ dq+1 = f ◦ dq ◦ dq+1 = f ◦ 0 = 0 and so f ∈ ker d∗q+1.
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1.4 Tensor Products

Definition 1.4.1. Let A and B be G-modules. Then A⊗Z B = A⊗B is also a G-module
with action given by

(a⊗ b)σ = aσ ⊗ bσ

for σ ∈ G and a unit tensor a⊗ b and then extending linearly to all of A⊗B.

Proposition 1.4.2. Let X be a G-module. Then the functor

X ⊗− : Gmod → Gmod

is additive. That is to say, given any family {Ai }i∈I of G-modules then we have a canonical
isomorphism

X ⊗

(⊕
i∈I

Ai

)
=
⊕
i∈I

X ⊗ Ai

Proof. This is immediate from the fact that taking tensor products commutes with colimits
in Gmod = ModZ[G].

Proposition 1.4.3. Let A be a free Z-module. Then

−⊗ A : ModZ →ModZ

is an exact functor on exact sequences of free Z-modules.

Proof. Suppose we are given an exact sequence

0 X Y Z 0
φ ψ

of free Z-modules. Then the exactness of the induced sequence

X ⊗ A Y ⊗ A Z ⊗ A 0

is immediate from the exactness of the original sequence. We just need to show that the
induced map

φ∗ : X ⊗ A→ Y ⊗ A
x⊗ a 7→ φ(x)⊗ a

is injective. Since Z is free, we can find a natural homomorphism f : Z → Y such that
ψ ◦ f = idZ . The splitting lemma for ModZ then implies that the original exact sequence
splits and we have a direct sum decomposition Y ∼= X ⊕ Z. It then follows that

Y ⊗ A = (X ⊗ A)⊕ (Z ⊗ A)

Proposition 1.4.4. Let X be a free Z-module. Then

X ⊗− : ModZ →ModZ

is an exact functor.
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Proof. Fix an exact sequence

0 A B C 0

Suppose that X =
⊕

i∈I Zi with Zi ∼= Z. By Proposition 1.4.2 we have isomorphisms

X ⊗ A ∼= X
⊕
i∈I

Zi ⊗ A

Write Ai = Zi ⊗ A. Observe that Zi ⊗ A ∼= Z⊗ A ∼= A so that the original exact sequence
implies the exactness of

0 X ⊗ Ai X ⊗Bi X ⊗ Ci 0

from which we get an exact sequence

0 X ⊗ A X ⊗B X ⊗ C 0

2 Definitions of Tate Cohomology

Throughout this section, G will always be a finite group.

2.1 Completely Free Resolutions

Definition 2.1.1. A completely free resolution of G is a commutative diagram

· · · X−2 X−1 X0 X1 X2 · · ·

Z

0 0

d−2 d1 d0

ε

d1 d2 d3

µ

in Gmod which is exact at every term.

Definition 2.1.2. Let q ≥ 1. We shall refer to the elements of Gq as q-cells and the
individual coordinates of a q-cell as the vertices of the cell. We let Xq = X−q−1 be the
G-free module on all q-cells. In other words

Xq = X−q−1 =
⊕
~σ∈Gq

Z[G]~σ

Moreover, we denote

X0 = X−1 = Z[G]

and let ε : X0 → Z and µ : Z → X0 be the augmentation and coaugmentation maps
respectively. Finally, we define maps dq : Xq → Xq−1. Since the Xq are all G-free modules,

8



it suffices to define the dq on the q-cells (and then we may extend linearly):

d0(1) = NG (q = 0)

d1(σ) = σ − 1 (q = 1)

dq(σ1, . . . , σq) = σ1(σ2, . . . , σq)

+

q−1∑
i=1

(−1)i(σ1, . . . , σi−1, σiσi+1, σi+2, . . . , σq)

+ (−1)q(σ1, . . . , σq−1) (q > 1)

d−1(1) =
∑
σ∈G

[σ−1(σ)− σ]

d−q−1(σ1, . . . , σq) =
∑
σ∈G

σ−1(σ, σ1, . . . , σq)

+
∑
σ∈G

q∑
i=1

(−1)i(σ1, . . . , σi−1, σiσ, σ
−1, σi+1, . . . , σq)

+
∑
σ∈G

(−1)q+1(σ1, . . . , σq, σ) (−q − 1 < −1)

This gives us a diagram

· · · X−2 X−1 X0 X1 X2 · · ·

Z

0 0

d−2 d1 d0

ε

d1 d2 d3

µ

in Gmod which is called the standard complex of G.

Proposition 2.1.3. The standard complex of G is a completely free resolution of G.

Proof. By construction, eachXq is a freeG-module and the ε, µ, dq are allG-homomorphisms.
To see that µ ◦ ε = d0, observe that

(µ ◦ ε)(1) = µ(1) = NG = d0(1)

Since the two functions agree on the generator 1, they must agree everywhere and so µ◦ε =
d0. It remains to show that the diagram is exact at each term. We do this by first splitting
the complex up into two sequences. The first of which is

0 Z X0 X1 X2 · · ·ε d1 d2 d3

(1)

Let i : Z→ X0 denote the inclusion and define the maps

D0 : X0 → X1

σ 7→ (σ)

Dq : Xq → Xq+1

σ(σ1, . . . , σq) 7→ (σ, σ1, . . . , σq)
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After some elementary calculations, we get

i ◦ ε+ d1 ◦D0 = idX0

Dq−1 ◦ dq + dq+1 ◦Dq = idXq

Now if x ∈ ker ε, the first equation implies that x ∈ im d1. Conversely, suppose that
x ∈ im d1. Now, it is immediate that ε ◦ d1 = 0 and so im d1 ⊆ ker d1 whence the sequence
is exact at Z.

Similarly, if x ∈ ker dq then x ∈ im dq+1. To prove the inclusion in the opposite direction,
we shall prove that dq ◦ dq+1 = 0 by induction on q ≥ 1. When q = 0 we set d0 = ε and D−1
by i. Then the basis case is clear. Assume that we have dq−1 ◦dq = 0. On one hand we have

dq = (Dq−2 ◦ dq−1 + dq ◦Dq−1) ◦ dq = dq ◦Dq−1 ◦ dq

On the other we have

dq = dq ◦ (Dq−1 ◦ dq + dq+1 ◦Dq) = dq ◦Dq−1 ◦ dq + dq ◦ dq+1 ◦Dq

Subtracting these equations gives

dq ◦ dq+1 ◦Dq = 0

But every cell in Xq+1 is in the image of Dq so we conclude that dq◦dq+1 = 0. This completes
the proof of exactness at Xq.

The second sequence is

0 Z X−1 X−2 X−3 · · ·µ d−1 d−2 d−3

the exactness of which follows by dualising the above argument in the following way. Taking
Hom(−,Z) of Sequence 1 yields a sequence

0 Hom(Z,Z) Hom(X0,Z) Hom(X1,Z) Hom(X2,Z) · · ·

which is exact by Proposition 1.3.5. Now if Xq = {xi } is the system of generators of Xq

consisting of all q-cells, let X q∗ be the so-called dual system of generators consisting of the
dual basis elements

x∗i (σxk) =

{
1 if σ = 1, i = k
0 if otherwise

is a Z[G]-free generators of Hom(Xq,Z). If we identify each xi with x∗i then we get a
canonical G-isomorphism X−q−1 ∼= Hom(Xq,Z) which shows that the second sequence is
indeed exact.

The last thing we need to check is exactness of the sequence

X−2 X−1 X0 X1
d−1 d0 d1

Observe that µ is injective, ε is surjective and d0 = µ ◦ ε. So ker d0 = ker ε and im d0 = imµ
whence ker d0 = im d1 and ker d−1 = im d0.

Definition 2.1.4. Let A be a G-module. We define the q-cochains of A to be the group

Aq = HomG(Xq, A)

We also have a natural map

∂q : HomG(Xq−1, A)→ HomG(Xq, A)

φ 7→ φ ◦ dq
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Proposition 2.1.5. Let A be a G-module. Then the sequence

· · · A−2 A−1 A0 A1 A2 · · ·∂−2 ∂−1 ∂0 ∂1 ∂2 ∂3

is a cochain complex in AbGrp.

Proof. By definition, we need to show that for every q we have ∂q+1 ◦ ∂q = 0. To this end,
fix q ≥ 0 and φ ∈ Aq. Then

(∂q+1 ◦ ∂)(φ) = ∂q+1(φ ◦ dq) = φ ◦ dq ◦ dq+1

But dq ◦ dq+1 = 0 since they are part of a complete free resolution of G.

Remark. Since the q-cochains are uniquely determined by their values on q-cells, we can
identify Aq with the collection of all maps Gq → A.

Definition 2.1.6. Let A be a G-module. We define the q-cocycles to be Zq = ker ∂q+1

and the q-coboundaries to be Rq = im ∂q. We then define the Tate cohomology group
of dimension q to be

Hq(G,A) = Zq�Rq

We shall also refer to Hq(G,A) as the q-th cohomology group with coefficients in A.

2.2 Explicit Descriptions of Low Dimensional Objects

2.2.1 H−1(G,A)

We have the following explicit descriptions for the −1-dimensional objects:

A−1 = HomG(X−1, A) = HomG(Z[G], A) = A

Z−1 = ker ∂0 = NGA

R−1 = IGA

H−1(G,A) = NGA�IGA

2.2.2 H0(G,A)

We have the following explicit descriptions for the 0-dimensional objects:

A0 = HomG(X0, A) = HomG(Z[G], A) = A

Z0 = ker ∂1 = AG

R0 = NGA

H0(G,A) = AG/NGA

We refer to H0(G,A) as the norm residue group of the G-module A.
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2.2.3 H1(G,A)

The 1-cochains form the group HomG(A1, A) which coincides with all functions f : G→
A.

The 1-cocyles are all 1-cochains x : G → A satisfying ∂∂2x = 0. In other words, they
are the 1-cochains that satisfy the crossed homomorphism condition

x(στ) = x(τ)σ + x(σ)

for all σ, τ ∈ G.
The 1-coboundaries are all the 1-cochains x : G → A such that there exists some 0-

cochain a ∈ A with ∂1x = a. In other words

x(σ) = aσ − a

for some a ∈ A.
Observe that if the G-action on A is trivial then the crossed homomorphisms are exactly

the homomorphisms G→ A. Moreover, there are no non-trivial 1-coboundaries. Hence, in
this case, H1(G,A) = Hom(G,A).

Adding to the previous remark, consider Q/Z as G-module with the trivial action of G.

Then H1(G,Q/Z) = Hom(G,Q/Z) = Ĝ is the character group of G.

2.2.4 H2(G,A)

The 2-cochains form the group HomG(A2, A) which coincides with all functions f : G2 →
A.

The 2-cocycles are all the 2-cochains x : G2 → A satisfying ∂3x = 0. In other words,
they are the 2-cochains satisfying the factor system condition

x(στ, ρ) + x(σ, τ) = x(τ, ρ)σ + x(σ, τρ)

for all σ, τ, ρ ∈ G.
The 2-coboundaries are all the 2-cochains x : G2 → A such that

x(σ, τ) = y(τ)σ − y(στ) + y(σ)

for some 1-cochain y : G→ A.
Factor systems are related to the problem of group extensions.

Definition 2.2.1. Let G be a group. We say that Ĝ is a group extension of G if Ĝ has
a subgroup isomorphic to G.

Now suppose that we are given a multitplicative abelian group A and an arbitrary group
G. We want to find all group extensions Ĝ of A such that A is normal in Ĝ and Ĝ/A ∼= G.

Assume that we have a solution Ĝ to the posed problem. Let {uσ } be a complete set

of coset representatives of Ĝ/A ∼= G so that each element of Ĝ can be written as a · uσ for

some a ∈ A and σ ∈ G. In order to determine the group table of Ĝ, we need to be able to
express uσ · a and uσ · uτ for some σ, τ ∈ G in the aforementioned form.

Since A is normal in Ĝ, uσ · a is in the same right coset as uσ. Hence there exists aσ ∈ A
such that uσ ·a = aσ ·uσ. This defines the structure of a a G-module on A via the assignment
a 7→ aσ = uσ · a · u−1σ .

12



Now fix σ, τ ∈ G. Then the product uσ · uτ lies in the same right coset as uστ . In other
words, uσ · uτ = x(σ, τ) · uστ for some x(σ, τ) ∈ A. Now observe that

(uσ · uτ ) · uρ = x(σ, τ) · uστ · uρ = x(σ, τ) · x(στ, ρ) · uστρ

and on the other hand

uσ · (uτ · uρ) = uσ · x(τ, ρ) · uτρ = x(τ, ρ)σ · uσ · uτρ = x(τ, ρ) · x(σ, τρ) · uστρ

Comparing these two, we then have that

x(σ, τ) · x(στ, ρ) = x(τ, ρ) · x(σ, τρ)

which is exactly the factor system condition and so x is a 2-cocycle.
Now suppose that {u′σ } is another set of coset representatives of Ĝ/A = G. Then, from

the above analysis, we get another factor system x′(σ, τ). Observe that, given σ ∈ G we
have that u′σ · u−1σ ∈ A. Moreover,

u′(−) · u−1(−) : G2 → A

(σ, τ) 7→ u′σ · u−1σ

is a 2-cocycle. Since A is abelian, we then have that

u′σu
′
τ

uσuτ
=
x′(σ, τ)u′στ
x(σ, τ)uστ

u′σu
′
τu
−1
τ u−1σ = x′(σ, τ)u′στu

−1
στ x(σ, τ)−1

u′σu
′
τu
−1
τ u−1σ = u′στu

−1
στ

x′(σ, τ)

x(σ, τ)

u′σu
′
τu
−1
τ u−1σ u′στu

−1
στ =

x′(σ, τ)

x(σ, τ)

u′σu
′
τu
−1
τ (u′σ

−1
u′σ)u−1σ u′στu

−1
στ =

u′σu
′
τu
−1
τ u′σ

−1
u′στu

−1
στ (u′σu

−1
σ ) =

(u′τu
−1
τ )σ · (uστ ′uστ )−1 · (u′σu−1σ ) =

which is exactly the 2-coboundary condition in multiplicative notation. This shows that Ĝ
is uniquely determined by the conjugation action of G on A and a class of equivalent factor
systems x(σ, τ) up to 2-coboundaries: a cohomology class in H2(G,A).

Conversely, suppose that A is a G-module and that we have a cohomology class c ∈
H2(G,A). Then this information determines a group extension Ĝ of A in the following way.

Ĝ is the free group with generators uσ for σ ∈ G and the elements of A subject to the
relations

aσ = uσ · au−1σ , uσ · uτ = x(σ, τ) · uστ

where x(σ, τ) is an element of c.

3 Properties of Cohomology Groups

Throughout this section, G will always be a finite group.
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3.1 Basic Properties

Proposition 3.1.1. Let f : A → B be a morphism of G-modules. Then f induces a
canonical homomorphism

fq : Hq(G,A)→ Hq(G,B)

given by post-composition with f .

Proof. We first define the map

fq : Aq → Bq

φ 7→ f ◦ φ

Then it is clear that fq is a homomorphism between q-cochains. Since f is aG-homomorphism,
it commutes with the action of G and, in particular, we have that ∂q+1 ◦ fq = fq+1 ◦ ∂q+1.
Now suppose that φ is a q-cocycle with respect to A. Then

φ ∈ ker ∂q+1 ⇐⇒ ∂q+1(φ) = 0 =⇒ (fq+1 ◦ ∂q+1)(φ) = 0 ⇐⇒ (∂q+1 ◦ fq)(φ) = 0

⇐⇒ fq(φ) ∈ ker ∂q+1

so that fq(φ) is a q-cocycle with respect to B. Now assume that φ is a q-coboundary with
respect to A. Then

φ ∈ im ∂q ⇐⇒ ∂q(ψ) = φ for some ψ ∈ Aq−1 =⇒ (fq ◦ ∂q)(ψ) = fq(φ)

⇐⇒ (∂q ◦ fq−1)(ψ) = fq(φ)

⇐⇒ fq(φ) ∈ im δq

so that fq(φ) is a q-coboundary with respect to B. It then follows that fq induces a homo-
morphism of cohomology groups

fq : Hq(G,A)→ Hq(G,B)

φ (mod Rq) 7→ fq(φ) (mod fq(Rq))

Proposition 3.1.2. Let

0 A B C 0
φ ψ

be a short exact sequence of G-modules. Then there exists a canonical homomorphism

δq : Hq(G,C)→ Hq+1(G,A)

of cohomology groups called the connecting homomorphism.

Proof. Conisder the diagram

0 Aq−1 Bq−1 Cq−1 0

0 Aq Bq Cq 0

0 Aq+1 Bq+1 Cq+1 0

φq−1

∂q

ψq−1

∂q ∂q

φq

∂q+1

ψq

∂q+1 ∂q+1

φq+1 ψq+1

14



which is obtained by applying the functor HomG(Xi,−) to the exact sequence. Since the Xi

are free G-modules, Corollary 1.3.4 then implies that the rows of this diagram are exact.
We shall write aq, bq, cq for the q-cochains in Aq, Bq and Cq respectively. We shall write

aq, bq, cq for their corresponding images in the cohomology groups.
Suppose that we are given cq ∈ Hq(G,C). We want to define δq(cq). Since cq is a q-

cochain with respect to C, we know that ∂q+1(cq) = 0. Moreover, the map ψq is surjective
so we can always choose a bq such that ψq(bq) = cq. Then

(ψq+1 ◦ ∂q+1)(bq) = (∂q+1 ◦ ψq)(bq) = ∂q+1(cq) = 0

and so ∂q+1(bq) ∈ kerψq+1 = imφq+1. Hence there exists aq+1 such that ∂q+1(bq) =
φq+1(aq+1). Since the Xi form a completeley free resolution of G, we have that ∂q+1 ◦ ∂q = 0
and so

(φq+2 ◦ ∂q+2)(aq+1) = (∂q+2 ◦ φq+1)(aq+1) = (∂q+2 ◦ ∂q+1)(bq) = 0

But φq+2 is injective and so ∂q+2(aq+1) = 0 whence aq+1 is a (q + 1)-cochain with respect to
A. We then define

δq : Hq(G,C)→ Hq+1(G,C)

cq 7→ aq+1

It remains to show that this definition of δq is well-defined. In other words, we must show
that it is independent of the choice of representative cq of cq and preimage bq. To this end,
suppose that c′q is another representative and b′q is another preimage. Let a′q+1 denote the
corresponding (q + 1)-cochain. Then

cq = c′q =⇒ cq − c′q = ∂q(cq−1) (for some cq−1)

=⇒ cq − c′q = (∂q ◦ ψq−1)(bq−1) (for some bq−1)

=⇒ ψq(bq)− ψq(b′q) = (ψq ◦ ∂q)(bq−1)
=⇒ bq − b′q − ∂q(bq−1) ∈ kerψq = imφq

=⇒ φq(aq) = bq − b′q − ∂q(bq−1) (for some aq)

=⇒ (∂q+1 ◦ φq)(aq) = ∂q(bq)− ∂q(b′q)
=⇒ (φq+1 ◦ ∂q+1)(aq) = φq+1(aq+1)− φq+1(a

′
q+1)

=⇒ ∂q+1(aq) = aq+1 − a′q+1 (φq+1 is injective)

=⇒ aq+1 = a′q+1

Theorem 3.1.3. Let

0 A B C 0
φ ψ

be a short exact sequence of G-modules. Then there exists a long exact sequence of cohomol-
ogy groups.
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H−q(G,A) H−q(G,B) H−q(G,C)

H−1(G,A) H−1(G,B) H−1(G,C)

H0(G,A) H0(G,B) H0(G,C)

H1(G,A) H1(G,B) H1(G,C)

Hq(G,A) Hq(G,B) Hq(G,C)

Proof. Consider the commutative diagram with exact rows

0 Aq Bq Cq 0

0 Aq+1 Bq+1 Cq+1 0

φq

∂q+1

ψq

∂q+1 ∂q+1

φq+1 ψq+1

Let ZA
q denote the q-cochains with respect to A and similarly for B and C. Let QA

q represent
the cokernel of the map ∂q with respect to A and similarly for B and C. By the Snake
Lemma, we then have an exact sequence

0 ZA
q ZB

q ZC
q

QA
q+1 QB

q+1 QC
q+1 0

Shifting the dimensions as necessary, we get a commutative diagram

QA
q QB

q QC
q 0

0 ZA
q+1 ZB

q+1 ZC
q+1

mAq mBq mCq

where

mA
q : Qq → Zq+1

[aq] 7→ ∂q+1(aq)

and similarly for B and C. Clearly, kermA
q = Hq(G,A) and cokermA

q = Hq+1(G,A) with
the same equalities holding for B and C. Appealing to the Snake Lemma once more yields
the long exact sequence

Hq(G,A) Hq(G,B) Hq(G,C)

Hq+1(G,A) Hq+1(G,B) Hq+1(G,C)

as desired.
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Proposition 3.1.4. Let

0 A B C 0
φ ψ

be a short exact sequence of G-modules. Then there exists a long exact sequence

0 AG BG CG

H1(G,A) H1(G,B) H1(G,C)

Proof. Consider the commutative diagram with exact rows

0 A B C 0

0 ZA
1 ZB

1 ZC
1

φ

dA

ψ

dB dC

φ1 ψ1

where the exactness of the second row is ensured by a similar argument to the previous
proof and

dA : A→ Z1

a 7→ (σ 7→ aσ − a)

Then ker dA = AG, coker dA = H1(G,A) and similarly for B and C. Appealing to the Snake
Lemma then yields the desired long exact sequence.

Proposition 3.1.5. Let

0 A B C 0

0 A′ B′ C ′ 0

φ

f

ψ

g h

φ′ ψ′

be a commutative diagram in Gmod with exact rows. Then the diagram

Hq(G,C) Hq+1(G,A)

Hq(G,C ′) Hq+1(G,A′)

δq

hq fq+1

δq

commutes.

Proof. Fix cq ∈ Hq(G,C). Let bq and aq+1 be such that cq = ψ(bq) and φ(aq+1) = ∂q+1(bq).
Then δq(cq) = aq+1 so that

(fq+1 ◦ δq)(cq) = fq+1(aq+1)

Let c′q = hq(cq), b
′
q = gq(bq) and a′q+1 = fq+1(aq+1). Then c′q = ψ′(b′q) and ∂q+1(b

′
q) = φ′(a′q+1)

so that

(δq ◦ hq)(cq) = δq(c′q) = a′q+1 = fq(a′q+1) = (fq ◦ δq)(cq)

and so the diagram commutes.
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Proposition 3.1.6. Let

0 0 0

0 A′ A A′′ 0

0 B′ B′ B′′ 0

0 C ′ C C ′′ 0

0 0 0

be a commutative diagram Gmod with exact rows and columns. Then the diagram

Hq−1(G,C ′′) Hq(G,C ′)

Hq(G,A′′) Hq+1(G,A′)

δq−1

δq−1 −δq

δq

commutes.

Proof. Let D be the kernel of the map B → C ′′ so that we have an exact sequence

0 D B C ′′ 0

Define G-homomorphisims

i : A′ → A⊕B′

a′ 7→ (a, b′)

where a is the image of a′ in A and b′ is the image of a′ in B′ and

j : A⊕B′ → D

(a, b′) 7→ d1 − d2

where d1 is the image of a in D and similarly for b′ and d2. Then we have an exact sequence

0 A′ A⊕B′ D 0i j

and a commutative diagram

A′ A A′′ B′′ C ′′

A′ A⊕B′ D B C ′′

A′ B′ C ′ C C ′′

i

−id

id

j

(id,0)

(−id,0)

id

id

By exactness, im(D → B′′) ⊆ im(A′′ → B′′). Moreover, the map A′′ → B′′ is injective
by hypothesis so we can extend the diagram by a homomorphism D → A′′. A similar
argument shows that we can extend the diagram by a homomorphism D → C ′. This
extended diagram is still commutative so applying Proposition 3.1.5 yields a commutative
diagram of cohomology groups
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Hq−1(G,C ′′) Hq(G,A′′) Hq+1(G,A′)

Hq−1(G,C ′′) Hq(G,D) Hq+1(G,A′)

Hq−1(G,C ′′) Hq(G,C ′) Hq+1(G,A′)

δq−1 δq

δq−1

id

id

δq

id

−id

δq−1 δq

The red arrows then yield the desired diagram in the statement of the Proposition.

Proposition 3.1.7. The cohomology functor

Hq(G,−) : AbGrp→ AbGrp

is (co)additive. That is to say, given any family {Ai }i∈I of G-modules, we have canonical
isomorphisms

Hq

(
G,
⊕
i∈I

Ai

)
∼=
⊕
i∈I

Hq(G,Ai)

Hq

(
G,
∏
i∈I

Ai

)
∼=
∏
i∈I

Hq(G,Ai)

Proof. Let A =
⊕

i∈I Ai. By Proposition 1.3.3 we have

Aq = HomG(Xq, A) ∼=
⊕
i∈A

HomG(Xq, Ai) =
⊕
i∈A

(Ai)q

and so ZA
q =

⊕
Z
Ai
q

and RA
q =

⊕
i∈I R

Ai
q whence the cohomology groups also coincide. A

similar proof shows that the functor also commutes with products.

3.2 G-induced Modules

Definition 3.2.1. Let A be a G-module. We say that A is G-induced if

A =
⊕
σ∈G

Dσ

for some subgroup D ⊆ A.

Proposition 3.2.2. Let A be a G-induced module so that A =
⊕

σ∈GD
σ for some subgroup

D ⊆ A. Then A ∼= Z[G]⊗D.

Proof. We have that

Z[G]⊗D =

(⊕
σ∈G

Zσ

)
⊗D =

⊕
σ∈G

(Z⊗D)σ ∼=
⊕
σ∈G

Dσ = A

Proposition 3.2.3. Let X be a G-induced module and A a G-module. Then X ⊗ A is a
G-induced module.

19



Proof. Let D ⊆ X be a subgroup such that X =
⊕

σ∈G σD. Then

X ⊗ A =

(⊕
σ∈G

Dσ

)
⊗ A ∼=

⊕
σ∈G

Dσ ⊗
⊕
σ∈G

Aσ =
⊕
σ∈G

(D ⊗ A)σ

since D ⊗ A is a subgroup of X ⊗ A, this completes the proof.

Proposition 3.2.4. Let A be a G-induced module and H ⊆ G a subgroup. Then A is an
H-induced H-module. Moreover, if H is normal in G then AH is a G/H-induced G/H-
module.

Proof. Write A =
⊕

σ∈GD
σ for some subgroup D ⊆ G. Let { τi } be a set of right coset

representatives of H in G. Then

A =
⊕
σ∈H

⊕
τi

Dστi =
⊕
σ∈H

(⊕
τi

Dτ
i

)σ

so that A is an H-induced H module.
Now suppose that H is normal in G. We claim that the G/H-module AH satisfies

AH =
∑

τ∈G/H

(NHD)τ

The sum on the right hand side is clearly a direct sum since A can be expressed as one.
Furthermore, any element of (NHD)τ is an element of AH so the sum is a subset of AH .
Conversely, fix a ∈ AH . Since a is G-induced, a admits a unique decomposition

a =
∑
τ∈G

dττ

for some dτ ∈ H. Now, given σ ∈ H, we have

a = aσ =
∑
τ∈G

dσττ =
∑
τ∈G

dστστ =
∑
τ∈G

dτστ = a

By uniqueness, we then have that dστ = dτ . It then follows that

a =
∑
τi

∑
σ∈H

dτστσ =
∑
τi

(∑
σ∈H

dστ

)τ

=
∑
τi

(NHdτ )
τ

where τi ranges over a set of right coset representatives of G/H. This proves the other
inclusion. Hence AH is G/H-induced.

Definition 3.2.5. Let A be a G-module. We say that A has trivial cohomology if

Hq(H,A) = 0

for all subgroups H ⊆ G.

Theorem 3.2.6. Let A be a G-induced module. Then A has trivial cohomology.

Proof. By Proposition 3.2.4 it suffices to show that Hq(G,A) = 0. In other words, we need
to show that the sequence
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· · · HomG(Xq, A) HomG(Xq+1, A) · · ·∂q

is exact. Suppose that A admits the decomposition A =
⊕

σ∈GD
σ. Let π : A → D be the

projection map given by projecting A onto the coordinate corresponding to the identity of
G. Then π induces an isomorphism

π∗ : HomG(Xq, A)→ Hom(Xq, D)

f 7→ π ◦ f

Indeed, this is clearly a homomorphism. To see that it is surjective, given f ∈ Hom(Xq, D),
let f ∗ : Xq → A be the unqiue function limnearly extending f . Then f ∗ commutes with the
action of G and satisfies π∗(f ∗) = f by construction and. To see that it is injective, note
that the image of a function in HomG(Xq, A) is determined uniquely by the image of π ◦ f
so if π ◦ f = 0 we must have that f = 0.

Now, Proposition 1.3.5 implies that the sequence

· · · Hom(Xq, D) Hom(Xq+1, D) · · ·

is exact. This, together with the isomorphism π∗, implies that the first sequence is exact as
claimed.

Lemma 3.2.7. Let A be a G-module. Then we have exact sequences

0 IG ⊗ A Z[G]⊗ A A 0

0 A Z[G]⊗ A JG ⊗ A 0

Proof. Recall that we have exact sequences

0 IG Z[G] A 0

0 A Z[G] JG 0

By Proposition 1.2.6, all groups involved are free Z[G]-modules. Appealing to Proposition
1.4.3 yields the desired exact sequences.

3.3 Dimension Shifting

Theorem 3.3.1 (Dimension Shifting). Let A be a G-module and H ⊆ G a subgroup. Define
the G-modules

Am = JG ⊗ · · · ⊗ JG︸ ︷︷ ︸
m times

⊗A

A−m = IG ⊗ · · · ⊗ IG︸ ︷︷ ︸
m times

⊗A

Then the m-fold composition of the connecting homomorphism δ induces an isomorphism

δm : Hq−m(H,Am)→ Hq(H,A)
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Proof. Since Z[G]⊗A is cohomologically trivial, applying the functor Hq(H,−) to the exact
sequences of Lemma 3.2.7 yields isomorphisms

δ : Hq−1(H,A) ∼= Hq(H, IG ⊗ A)

δ : Hq−1(H, JG ⊗ A) ∼= Hq(H,A)

Iterating this process yields isomorphisms for all m ∈ Z.

Corollary 3.3.2. Let A be a G-module. Then for all q ∈ Z, Hq(G,A) is torsion. In
particular, the order of the elements of Hq(G,A) divide |G|.

Proof. First suppose that q = 0. Recall that H0(G,A) = AG/NGA. Let n = |G| and
a ∈ AG. Then NGa = na whence n ·Hq(G,A) = 0. The general case for all q then follows
via dimension shifting.

Corollary 3.3.3. Let A be a uniquely divisible G-module. Then A has trivial cohomology.

Proof. Since A is uniquely divisible, the multiplication-by-n map n : A → A is a bijection
for all n ≥ 1. This induces an isomorphism of cohomology groups n : Hq(H,A)→ Hq(H,A)
for all subgroups H ⊆ G. In particular, if n = |G| then we have

Hq(H,A) = n ·Hq(H,A) = 0

by Corollary 3.3.2.

Corollary 3.3.4. Consider Z and Q as G-modules with the trivial action. Then H2(G,Z) ∼=
χ(G) where χ(G) is the character group of G.

Proof. We first observe that we have an exact sequence

0 Z Q Q/Z 0

Now, Q is uniquely divisible and so Corollary 3.3.3 implies that Q is cohomologically trivial.
We then have

H2(G,Z) ∼= H1(G,Q/Z) = Hom(G,Q/Z) = χ(G)

as required.

Definition 3.3.5. Let G be a group and g, h ∈ G. The commutator of g and h is defined
to be

[g, h] = g−1h−1gh

An element of G that is of the form [g, h] for some g, h ∈ G is called a commutator. We
define the commutator subgroup [G,G] of G to be the one generated by the commutators
of G. We define the abelianisation of G, denoted Gab to be G/[G,G].

Remark.

1. Consider the inclusion functor i : AbGrp → Grp. Then the functor F : Grp →
AbGrp is a left-adjoint for i.

2. It is immediately clear that G is abelian if and only if it is equal to its abelianisation.

Theorem 3.3.6. Consider Z as a G-module with the trivial action. Then H−2(G,Z) ∼= Gab.
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Proof. Since Z[G] is G-induced, it has trivial cohomology. Applying the functor Hq(G,−)
to the exact sequence

0 IG Z[G] Z 0

yields an isomorphism H−2(G,Z) ∼= H−1(G, IG). Now, by definition, we have H−1(G, IG) =
IG/I

2
G so we need to exhibit an isomorphism G/[G,G] ∼= IG/I

2
G. We claim that the map

log : G→ IG/I
2
G

σ 7→ (σ − 1) + I2G

induces such an isomorphism. We must first check that φ is indeed a homomorphism. To
this end, fix σ, τ ∈ G. Then

φ(στ) = (στ − 1) + I2G = [(σ − 1) + (τ − 1) + (σ − 1)(τ − 1)] + I2G
= [(σ − 1) + I2G] + [(τ − 1) + I2G] = φ(σ)φ(τ)

Now, IG/I
2
G is abelian so ker(log) necessarily contains the commutator subgroup of G. We

then have an induced homomorphism

log : G/[G,G]→ IG/I
2
G

which we claim is an isomorphism. In order to show that log is bijective, we shall construct
it’s inverse. Recall that IG is the free abelian group on σ−1 for σ ∈ G\ { 1 }. Then the map

exp : IG → G/[G,G]

given by (σ− 1) 7→ σ[G,G] is clearly a surjective homomorphism. Now, given σ, τ ∈ G with
σ, τ 6= 1 we have

(σ − 1) · (τ − 1) = (στ − 1)− (σ − 1)− (τ − 1) 7→ στσ−1τ−1[G,G] = 1

and so the elements of I2G are in ker(exp). We then have an induced homomorphism

exp : IG/I
2
G → G/[G,G]

satisfying exp ◦ log = id and log ◦ exp = id whence log : Gab ∼= IG/I
2
G is an isomorphism.

4 Inflation, Restriction and Corestriction

Throughout this section, G will always be a finite group and H ⊆ G a subgroup.

4.1 Inflation and Restriction

Unless otherwise stated, q shall refer to an element of Z≥1.

Definition 4.1.1. Suppose that H is normal in G. We define the q-inflation map to be
the map

infq : { (G/H)q → AH } → {Gq → A }

defined as follows. Given a q-cochain x : (G/H)q → AH , define y = infq(x) to be the
q-cochain

y(σ1, . . . , σq) = x(σ1H, . . . , σqH)
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Proposition 4.1.2. Suppose that H is normal in G. Then the q-inflation map satisfies

infq+1 ◦ ∂q+1 = ∂q+1 ◦ infq

Hence the q-inflation map descends to a homomorphism

infq : Hq(G/H,AH)→ Hq(G,A)

Proof. Fix a q-cochain x : (G/H)q → AH . If q > 1 we then have that

(infq+1 ◦ ∂q+1)(x)(σ1, . . . , σq+1) = ∂q+1(x)(σ1H, . . . , σq+1H)

= (x ◦ dq+1)(σ1H, . . . , σq+1H)

= x(σ2H, . . . , σq+1H)σ1

+

q∑
i=1

(−1)ix(σ1H, . . . , σi−1H, σiσi+1H, σi+2H, . . . , σq+1H)

+ (−1)q+1x(σ1H, . . . , σqH)

= infq(x)(σ2, . . . , σq+1)
σ1

+

q∑
i=1

(−1)iinfq(x)(σ1, . . . , σi−1, σiσi+1, σi+1, . . . , σq+1)

+ (−1)q+1infq(x)(σ1, . . . , σq)

= (∂q+1 ◦ infq)(x)(σ1, . . . , σq+1)

If q = 1 then the proof is immediate. It then follows that infq sends cocycles to cocycles
and coboundaries to coboundaries so we get an induced homomorphism of cohomology
groups.

Definition 4.1.3. We define the q-restriction map to be the map

resq : {Gq → A } → {Hq → A }

defined as follows. Given a q-cochain x : Gq → A, define resq(x) to be the q-cochain Hq → A
given by restricting x to Hq.

Proposition 4.1.4. The q-restriction map satisfies

resq+1 ◦ ∂q+1 = ∂q+1 ◦ resq

Proof. This is proved in the same way as for the inflation map.

Proposition 4.1.5. Suppose that H is normal in G and f : A→ B is a homomorphism of
G-modules. Then the diagrams

Hq(G/H,AH) Hq(G/H,BH)

Hq(G,A) Hq(G,B)

f

infq infq

f

Hq(G,A) Hq(G,B)

Hq(H,A) Hq(H,B)

f

resq resq

f

commute. Note that the normality condition is not needed in the second diagram.
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Proof. We prove the Proposition for the restriction diagram. The one for inflation follows
from a similar argument. Fix [c] ∈ Hq(G,A). Then

(resq ◦ f)([c]) = resq([f ◦ c]) = f |H ◦ c|H = f([c|H ]) = (f ◦ resq)([c])

Proposition 4.1.6. Let

0 A B C 0
φ ψ

(2)

be an exact sequence in Gmod. Suppose that H is normal in G and that the sequence

0 AH BH CH 0
φ ψ

(3)

is exact. Then the diagram

Hq(G/H,CH) Hq+1(G/H,AH)

Hq(G,C) Hq+1(G,A)

δq

infq infq+1

δq

commutes.

Proof. Fix a cohomology class c′q ∈ Hq(G/H,CH). By exactness of Sequence 3, there exists
b′q ∈ BH such that ψq(b

′
q) = c′q. Moreover, there exists a′q+1 ∈ AH such that φq+1(a

′
q+1) =

∂q(b
′
q). Then δq(c′q) = a′q+1.
Conversely, by exactness of Sequence 2, there exists bq ∈ B such that ψq(bq) = infq(c

′
q).

Moreover, there exists aq+1 ∈ A such that φq+1(aq+1) = ∂q(bq). Then δq(infq(c′q)) = aq+1.
Now,

(φq+1 ◦ infq+1)(a
′
q+1) = (infq+1 ◦ φq)(a′q+1)

= (infq+1 ◦ ∂q)(b′q)
= (∂q ◦ infq)(b

′
q)

But observe that

ψq(bq) = infq(c
′
q) = (infq ◦ ψq)(b′q) = (ψq ◦ infq)(b

′
q) = ψq(infq(b

′
q))

and so infq(b
′
q) is a preimage of infq(c

′
q). But the definition of a′q+1 is independent of the

choice of such a preimage so we then have that

(φq+1 ◦ infq+1)(a
′
q+1) = ∂q(bq)

= φq+1(aq+1)

But φ is injective and so infq+1(a
′
q+1) = aq+1 whence infq+1 ◦ δq = δq ◦ infq.
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Proposition 4.1.7. Let

0 A B C 0
φ ψ

be an exact sequence in Gmod. Then the diagram

Hq(G,C) Hq+1(G,A)

Hq(H,C) Hq+1(H,A)

δq

resq resq+1

δq

commutes.

Proof. This follows the same reasoning as the proof for the previous Proposition.

Theorem 4.1.8. Let A be a G-module and suppose that H is normal in G. Then the
sequence

0 H1(G/H,AH) H1(G,A) H1(H,A)inf res

is exact.

Proof. We first prove that the inflation map is injective. To this end, fix a 1-cocycle x :
G/H → AH such that inf(x) is a 1-coboundary with respect to A. Then

inf(x)(σ) = x(σH) = aσ − a (for some a ∈ A)

This implies that for all τ ∈ H we have

aστ − a = aσ − a

whence aτ = a. Hence a ∈ AH and so x is a 1-coboundary x(σH) = aσH − a.
We must now show exactness at H1(G,A). In other words, we need to show that

ker(res) = im(inf). To this end, fix a 1-cocycle x : G/H → AH . Given σ ∈ H we have

(res ◦ inf)(x)(σ) = inf(x)(σ) = x(σH) = x(1)

Now, since x is a 1-cocycle, we have that

x(1) = x(1 · 1) = x(1)1 + x(1) = x(1) + x(1) = 0

We thus see that im(inf) ⊆ ker(res). Conversely, suppose that x ∈ ker(res). Then x : G→ A
is a 1-cocycle that restricts to a 1-coboundary of the H-module A:

x(τ) = aτ − a (for all τ ∈ H, some a ∈ A)

Now let ρ : G → A be the 1-coboundary given by ρ(σ) = aσ − a. Then the 1-cocycle
x′(σ) = x(σ) − ρ(σ) is in the same cohomology class as x and restricts to the zero map on
H.

Now, define y : G/H → A by y(σH) = x′(σ). We claim that y is a 1-cocycle with respect
to AG. We must first check that it is well-defined. To this end, suppose that τH = σH.
Then τ = σπ for some π ∈ H. Then

y(τH) = y(σπH) = x′(σπ) = x′(σ) + x′(π)σ = x′(σ) = y(σH)
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Furthermore,

x(τσ) = x(τ) + x(σ)τ = x(σ)τ (for all τ ∈ G)

Since y(σH) = y(τσH) for all τ ∈ H, it then follows that

y(σH) = y(τσH) = x(σ)τ = y(σH)τ (for all τ ∈ H)

so that y(σH) ∈ AG and so y is in fact a 1-cocyle with respect to AG. It is clear that
inf(y) = x′. Modding out by coboundaries, we then see that ker(res) ⊆ im(inf).

Theorem 4.1.9. Let A be a G-module and suppose that H is normal in G. If H i(H,A) = 0
for all 1 ≤ i ≤ q − 1 then the sequence

0 Hq(G/H,AH) Hq(G,A) Hq(H,A)
infq resq

is exact.

Proof. We prove the Theorem by induction on the dimension q by dimension shifting. The-
orem 4.1.8 provides the basis case for the induction. Now set B = Z[G]⊗A and C = JG⊗A.
Then we have an exact sequence

0 A B C 0

By hypothesis, we have that H1(H,A) = 0, so Proposition 3.1.4 yields an exact sequence

0 AH BH CH 0

By Proposition 4.1.6 we then have a commutative diagram

0 Hq−1(G/H,CH) Hq−1(G,C) Hq−1(H,C)

0 Hq(G/H,AH) Hq(G,A) Hq(H,A)

infq−1

δq−1

resq−1

δq−1 δq−1

infq resq

Now, B is G-induced and H-induced and BH is G/H-induced so that the connecting ho-
momorphisms δq−1 are all isomorphisms. By the induction hypothesis, the first row is exact
so we must have that the second row is also exact.

Definition 4.1.10. We define the 0-restriction map to be the map

res0 : H0(G,A)→ H0(H,A)

a+NGA 7→ a+NHA

Lemma 4.1.11. Let

0 A B C 0
φ ψ

be an exact sequence in Gmod. Then the diagram

H0(G,C) H1(G,A)

H0(H,C) H1(H,A)

δ0

res0 res1

δ0
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commutes.

Proof. Let c ∈ CG be a 0-cocycle and c = c+NGC it’s image in H0(G,C). Then res0(c) =
c + NHC so that c is also a 0-cocyle of the H-module C. Let b ∈ B be such that ψ(b) = c
and a1 : G→ A a 1-cocycle such that φ1(a1) = ∂0(b). Then δ0(c) = a1 and

(δ0 ◦ res0)(c) = res1a1 = res1a1 = (res1 ◦ δ0)(c)

Theorem 4.1.12. Let q ∈ Z. Then restriction is the family of homomorphisms

resq : Hq(G,A)→ Hq(H,A)

uniquely determined by the properties

1. When q = 0 we explicitly have

res0 : H0(G,A)→ H0(H,A)

a+NGA 7→ a+NHA

2. Given an exact sequence

0 A B C 0
φ ψ

we have a commutative diagram

Hq(G,C) Hq+1(G,C)

Hq(H,C) Hq+1(H,C)

δq

resq resq+1

δq

Proof. Via dimension shifting, the q-fold composition of δ provides us with isomorphisms
δq : H0(G,Aq)→ Hq(G,A) and δq : H0(H,Aq)→ Hq(H,A) that fit into the diagram

H0(G,Aq) Hq(G,A)

H0(H,Aq) Hq(H,A)

δq

res0 resq

δq

We define resq to be the homomorphism extending the above diagram. Then it is clear that
the resq are unique and coincide with the previous definition of resq. It remains to verify
that resq satisfies the second property in the Theorem.

By induction, we obtain an exact sequence

0 Aq Bq Cq 0

Now consider the diagram
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H0(G,Cq) H1(G,Aq)

H0(H,Cq) H1(H,Aq)

Hq(G,C) Hq+1(G,A)

Hq(H,C) Hq+1(H,A)

δ0

res0

δq

(−1)qδq
res1

δ0

(−1)qδqδq

resq resq+1

δq

δq

The commutativity of the top square is guaranteed by Lemma 4.1.11. The commutativity
of the back and front squares are guaranteed by q applications of Proposition 3.1.6. The
commutativity of the side squares is guaranteed by the definition of resq. This then implies
that the bottom square is also commutative since the maps transferring from the top square
to the bottom square are all isomorphisms.

Definition 4.1.13. Let A be a G-module. We define the Verlagerung or transfer from
G to H to be the homomorphism

Ver : Gab → Hab

induced by the restriction H−2(G,Z)→ H−2(H,Z).

4.2 Corestriction

Definition 4.2.1. We define the (−1)-corestriction map to be the homomorphism

cores−1 : H−1(H,A)→ H−1(G,A)

a+ IHA 7→ a+ IGA

Similarly, we define the 0-corestriction map to be the homomorphism

cores0 : H0(H,A)→ H0(G,A)

a+NHA 7→ NG/Ha+NGA

where NG/Ha =
∑

σi
aσi ∈ AG where the σi are a set of left coset representatives of H in G.

Lemma 4.2.2. Let

0 A B C 0
φ ψ

be an exact sequence in Gmod. Then the diagram

H−1(H,C) H0(H,A)

H−1(G,C) H0(G,A)

δ−1

cores−1 cores0

δ−1

commutes.
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Proof. Fix a (−1)-cocyle c ∈ NHC and let c = c+IHC be the corresponding cohomology class.
Then c ∈ NGC is a representative of the cohomology class cores−1(c) = c+IGC ∈ H−1(G,C).
Choose b ∈ B such that ψ(b) = c and a0 ∈ A such that φ(a0) = ∂0(b) = NHb so that

(cores0 ◦ δ−1)(c) = NG/Ha0 +NGA

On the other hand, we have

∂0(b) = NGb = NG/HNHb = NG/H(φ(a0)) = φ(NG/Ha0)

hence δ−1(c+ IGC) = NG/Ha0 +NGA whence

(δ−1 ◦ cores−1)(c) = NG/Ha0 +NGA = (cores0 ◦ δ−1)(c)

Theorem 4.2.3. Let q ∈ Z. Then corestriction is the family of homomorphisms

coresq : Hq(H,A)→ Hq(G,A)

uniquely determined by the properties

1. When q = 0 we explicitly have

res0 : H0(H,A)→ H0(G,A)

a+NHA 7→ NG/Ha+NGA

2. Given an exact sequence

0 A B C 0
φ ψ

we have a commutative diagram

Hq(H,C) Hq+1(H,C)

Hq(G,C) Hq+1(G,C)

δq

coresq coresq+1

δq

Proof. The proof is dual to that for restriction.

Theorem 4.2.4. The homomorphism

κ : Hab → Gab

induced by the corestriction

cores−2 : H−2(H,Z)→ H−2(G,Z)

coincides with the canonical homomorphism σ[H,H] 7→ σ[G,G].

Proof. This follows immediately from the commutative diagram
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H−2(H,Z) H−1(H, IH) = IH/I
2
H Hab

H−2(G,Z) H−1(G, IG) = IG/I
2
G Gab

δ−2

∼

cores−2 cores−1

log

∼

κ

δ−2

∼
log

∼

obtained via dimension shifting. Here the map cores−1 is understood to be the composition of
the natural map H−1(H, IH)→ H−1(H, IG) with cores−1 : H−1(H, IG)→ H−1(G, IG).

Theorem 4.2.5. Let A be a G-module. Then the composition

Hq(G,A) Hq(H,A) Hq(G,A)
resq coresq

is the endomorphism

coresq ◦ resq = [G : H] · id

Proof. First suppose that q = 0 and fix a cohomology class a = a + NGA ∈ Hq(G,A) for
some a ∈ AG. Then

(cores0 ◦ res0)(a) = cores0(a+NHA) = NG/Ha+NGA = [G : H]a+NGA = [G : H] · a

Via dimension shifting, we have the commutative diagram

H0(G,Aq) H0(G,Aq)

Hq(G,A) Hq(G,A)

cores0◦res0

δq δq

coresq◦resq

Since the vertical maps are isomorphisms and the top map is multiplication by [G : H], it
follows that the bottom map must also be multiplication by [G : H].

Proposition 4.2.6. Let f : A→ B be a homomorphism of G-modules. Then the diagram

Hq(G,A) Hq(G,B)

Hq(H,A) Hq(H,B)

f

resq resqcoresq

f

coresq

commutes.

Proof. This follows immediately from the definitions in the case that q = 0. For the general
case first note that the homomorphism f : A → B induces a homomorphism f : Aq → Bq.
Now consider the diagram

H0(G,Aq) H0(G,Bq)

H0(H,Aq) H0(H,Bq)

Hq(G,A) Hq(G,B)

Hq(H,A) Hq(H,B)

f
res0

δq

δq

res0

f

cores0

δq

cores0

f
resq

resq

f

δq

coresq
coresq
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The back and front squares are commutative by Proposition 3.1.5. The side squares are
commutative by Theorems 4.1.12 and 4.2.3. The top square is commutative from the case
when q = 0. Since the vertical maps are all isomorphisms, it follows that the bottom square
must also be commutative.

Remark. Let A be a torsion abelian group. By the Chinese Remainder Theorem, A admits
a decomposition into its p-Sylow subgroups Ap where Ap consists of all elements of A of
p-power order. We refer to Ap as the p-primary part of A.

Proposition 4.2.7. Let A be a G-module and Gp a p-Sylow subgroup of G. Then for all
q ∈ Z we have

resq : Hq(G,A)p → Hq(Gp, A)

is injective and

coresq : Hq(Gp, A)→ Hq(G,A)p

is surjective.

Proof. We have that coresq◦resq = [G : Gp]·id. But [G : Gp] and p are relatively prime so that
coresq ◦ resq is an automorphism of Hq(G,A)p. Hence if we suppose that for x ∈ Hq(G,A)p
we have that resq(x) = 0, it then follows that coresq ◦ resq(x) = 0 whence x = 0 and so resq
is inejctive.

To see the second claim we note that by Corollary 3.3.2, the elements of Hq(Gp, A) have
p-power order whence coresq(H

q(Gp, A)) ⊆ Hq(G,A)p. But coresq ◦ resq is a bijection on
Hq(G,A)p so we must have that im(coresq) = Hq(G,A)p.

Corollary 4.2.8. Let A be a G-module. Suppose that for every prime p there exists a
p-Sylow subgroup Gp of G such that Hq(Gp, A) = 0. Then Hq(G,A) = 0.

Proof. By Proposition 4.2.7, we have an injection

resq : Hq(G,A)p → Hq(Gp, A)

By hypothesis, each such Hq(Gp, A) = 0 whence Hq(G,A)p = 0 for every prime p. But
Hq(G,A) is torsion and is thus the direct sum of its p-Sylow subgroups. Hence Hq(G,A) =
0.

4.3 G/H-induced Modules

Definition 4.3.1. Let A be a G-module. We say that A is G/H-induced if

A =
⊕

σ∈G/H

Dσ

for some H-module D and σ ∈ G/H runs over a set of left coset representatives of H in G.

Theorem 4.3.2 (Shapiro’s Lemma). Let A =
⊕

σ∈G/H D
σ be a G/H-induced module. Then

Hq(G,A) ∼= Hq(H,D)

via the composition
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Hq(G,A) Hq(H,A) Hq(H,D)
resq π

where π is induced by the canonical projection π : A→ D.

Proof. First suppose that q = 0. Let {σi }1≤i≤m (with σ1 = 1) be a set of left coset
representatives of H in G so that A =

⊕m
i=1D

σi . We define a map, which we claim is the
inverse of the composition

AG/NGA AH/NHA DH/NHD
res0 π

by

ν : DH/NHD → AG/NGA

d+NHD 7→

(
m∑
i=1

dσi

)
+NGA

We must first check that this definition is well-defined. Suppose that d+NHD = d′+NHD.
Then d′ = d+ z for some z =

∑
τ∈H zτ with τ ∈ D. It then follows that

ν(d′ +NHD) =

(
m∑
i=1

dσi +
m∑
i=1

∑
τ∈H

zσiτ

)
+NGA = d+NGA = ν(d+NHD)

To see that ν is the inverse of π ◦ res0, first fix a+NGA ∈ AG/NGA. Then

(ν ◦ π ◦ res0)(a+NGA) = (ν ◦ π)(a+NHA) = ν(π(a) +NHD)

=

(
m∑
i=1

π(a)σi

)
+NGA

= a+NGA

The composition in the opposite direction follows from a similar argument. For the general
case set for all q ≥ 0

Aq = JG ⊗ · · · ⊗ JG ⊗ A, A−q = IG ⊗ · · · ⊗ IG ⊗ A
Dq
G = JG ⊗ · · · ⊗ JG ⊗D, D−qG = IG ⊗ · · · ⊗ IG ⊗D

Dq
H = JH ⊗ · · · ⊗ JH ⊗D, D−qH = IH ⊗ · · · ⊗ IH ⊗D

Observe that by Proposition 1.2.6 we have

IG = IH ⊕
⊕
τ∈G

(
m∑
i=2

Z(σ−1i − 1)

)τ

JG = JH ⊕
⊕
τ∈G

(
m∑
i=2

Zσi−1
)τ

so that Dq
G = Dq

H⊕Cq for some H-induced H-module Cq. Dimension shifting then provides
us with a commutative diagram

H0(G,Aq) H0(H,Aq) H0(H,Dq
H) H0(H,Dq

G)

Hq(G,A) Hq(H,A) Hq(H,D)

res0

δq

πH

δq

ρ

δq

resq π
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The composite πH ◦ res0 is bijective by the special case in 0-dimensions. ρ is bijective
because of the coadditivity of H0(H,−) and the fact that H-induced modules have trivial
cohomology. Moreover, it is clear that the composition ρ ◦ πH is induced by the projection
π : A → D so that the right-hand square commutes. Since the vertical maps are all
isomorphisms, it follows that π ◦ resq is also an isomorphism.

5 The Cup Product

5.1 Definition

Theorem 5.1.1. Let A,B be G-modules and p, q ∈ Z. Then there exists a family of maps

^: Hp(G,A)×Hq(G,B)→ Hp+q(G,A⊗B)

called the cup product which is uniquely determined by the conditions

1. When q = p = 0 we have

^: H0(G,A)×H0(G,B)→ H0(G,A⊗B)

(a, b) 7→ a⊗ b

2. Given exact sequences

0 A A′ A′′ 0

0 A⊗B A′ ⊗B A′′ ⊗B 0

in Gmod, we have a commutative diagram

Hp(G,A′′) Hq(G,B) Hp+q(G,A′′ ⊗B)

Hp+1(G,A) Hq(G,B) Hp+q+1(G,A⊗B)

×
δp

^

id δp+q

× ^

so that δp+q(a′′ ^ b) = δp(a′′) ^ b for a′′ ∈ Hp(G,A′′) and b ∈ Hq(G,B).

3. Given exact sequences

0 B B′ B′′ 0

0 A⊗B A⊗B′ A⊗B′′ 0

in Gmod, we have a commutative diagram

Hp(G,A) Hq(G,B′′) Hp+q(G,A⊗B′′)

Hp(G,A) Hq+1(G,B) Hp+q+1(G,A⊗B)

×

id

^

δq (−1)qδp+q

× ^
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so that δp+q(a ^ b′′) = (−1)q(a ^ δq(b′′)) for a ∈ Hp(G,A) and b′′ ∈ Hq(G,B′′).

Proof. We first note that in dimensions p = q = 0, the cup product is indeed well-defined
since we have a natural mapping NGA×NGB → NG(A⊗B) induced by the tensor product.

Now, to define the cup product for arbitary dimensions, first recall that we can identify
A⊗B with B⊗A and A⊗ (B⊗C) with (A⊗B)⊗C for G-modules A,B and C. We thus
have a natural identifications for the dimension shifting modules Ap ⊗ B = (A ⊗ B)p and
A⊗Bq = (A⊗B)q for all p, q ∈ Z. Then, given arbitrary p, q ∈ Z, we consider the diagram

H0(G,Ap) H0(G,Bq) H0(G,Ap ⊗Bq)

Hp(G,A) H0(G,Bq) Hq(G,A⊗Bq)

Hp(G,A) Hq(G,B) Hp+q(G,A⊗B)

×

δp

^

id δp

×

id

^

δq δq

× ^

(4)

We may then define

^: Hp(G,A)×Hq(G,B)→ Hp+q(G,A⊗B)

to be the natural homomorphism extending the above diagram to a commutative diagram.
It is then immediately clear, by construction, that should ^ satisfy Properties 2 and 3 of
the Theorem then ^ is unique.

In order to prove that ^ satisfies Properties 2 and 3, we first find explicit descriptions
in the case of (p, 0) and (0, q) for p, q ≥ 0. We claim that

^: Hp(G,A)×H0(G,B)→ Hp(G,A⊗B)

(ap, b0) 7→ ap ⊗ b0

^: H0(G,A)×Hq(G,B)→ Hq(G,A⊗B)

(a0, bq) 7→ a0 ⊗ bq

are the explicit descriptions. It is immediately clear that Property 1 is satisfied by this
definition so we must verify Properties 2 and 3. Let us verify Property 2. Suppose that we
are given exact sequences

0 A A′ A′′ 0

0 A⊗B A′ ⊗B A′′ ⊗B 0

φ ψ

φ ψ

We need to show that the diagram

Hp(G,A′′) H0(G,B) Hp(G,A′′ ⊗B)

Hp+1(G,A) H0(G,B) Hp+1(G,A⊗B)

×
δp

^

id δp

× ^
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commutes. To this end, fix a′′p ∈ Hp(G,A′′) and b0 ∈ H0(G,B). Let a′p be such that

ψ(a′p) = a′′p and a′p+1 be such that φ(ap+1) = ∂p+1(a
′
p). Then ∂p(a′′p) = ap+1. Then

δp(ap′′) ^ b0 = ap+1 ⊗ b0

On the other hand, since δp is independent of the choice of preimage, we can choose a′p⊗ b0
to be a preimage of a′′p ⊗ b0 under ψ. Then, clearly, φ(ap+1 ⊗ b0) = ∂p+1(a

′
p ⊗ b0). This then

implies that

δp(a′′p ^ b0) = a′p ⊗ b0 = δp(ap′′) ^ b0

and so the diagram commutes and Property 2 is satisfied. A similar argument shows that
this definition also satisfies Property 3. It is then clear that this definition of ^ coincides
with the one given in Diagram 4.

To prove the general case, suppose we are given exact sequences as in the statement of
the Theorem. Then we get exact sequences

0 Aq A′q A′′q 0

0 (A⊗B)q (A′ ⊗B)q (A′′ ⊗B)q 0

and

0 Bp B′p B′′p 0

0 (A⊗B)p (A′ ⊗B)p (A′′ ⊗B)p 0

which induce diagrams

Hp(G,A′′)×H0(G,Bq) Hp(G, (A′′ ⊗B)q)

Hp+1(G,A)×H0(G,Bq) Hp+1(G, (A⊗B)q)

Hp(G,A′′)×Hq(G,B) Hp+q(G,A′′ ⊗B)

Hp+1(G,A)×Hq(G,B) Hp+q+1(G,A⊗B)

^

(δp,id)

δq

(−1)pqδq
δp

^

(−1)(p+1)qδq^

(δp,id) δp+q

^

(id,δq)

and

H0(G,Ap)×Hq(G,B′′) Hq(G, (A⊗B′′)p)

H0(G,Ap)×Hq+1(G,B) Hq+1(G, (A⊗B)p)

Hp(G,A)×Hq(G,B′′) Hp+q(G,A⊗B′′)

Hp(G,A)×Hq+1(G,B) Hp+q+1(G,A⊗B)

^

(id,δp)

δp

δp
δq

^

δp^

(id,δq) (−1)pδ

^

(δp,id)

Now, the left hand squares of these cubes commutes trivially. The right hand squares
commute by the q-fold (respectively p-fold) compositions of squares from Proposition 3.1.6.
The front and back squares commute by the definition of the cup product. By the discussion
of the cases (p, 0) and (0, q), the top squares commute. Since the vertical maps are all
isomorphisms, it then follows that the bottom squares commute.
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5.2 Properties

Proposition 5.2.1. Let f : A → B and g : A′ → B′ be homomorphisms of G-modules.
Denote by f ⊗ g the induced homomorphism

f ⊗ g : A⊗B → A′ ⊗B′

Then the diagram

Hp(G,A) Hq(G,B) Hp+q(G,A⊗B)

Hp(G,A′) Hq(G,B′) Hp+q(G,A′ ⊗B′)

×

f

^

g f⊗g

× ^

commutes.

Proof. This is immediate in the case that p = q = 0. The general case then follows via
dimension shifting.

Proposition 5.2.2. Let A,B be G-modules and H ⊆ G a subgroup. Then for all a ∈
Hp(G,A) and b ∈ Hq(G,B) we have the relations

resp(a ^ b) = resp(a) ^ resp(b)

(coresp ◦ resp)(a ^ b) = a ^ coresp(b)

Proof. The general case follows from the case where p = q = 0 via dimension shifting. Now
suppose that p = q = 0. The first formula is immediate. To prove the second formula, fix
a+NGA ∈ H0(G,A) and b+NHB ∈ H0(H,B). By the definition of corestriction, we have

cores0((a+NHA) ∪ (b+NHA)) = cores0(a⊗ b+NH(A⊗B)

=
∑

σ∈G/H

((a⊗ b)σ) +NG(A⊗B)

=

 ∑
σ∈G/H

a⊗ bσ
+NG(A⊗B)

= a ^

∑
σG/H

bσ

+NGB

= a ^ cores0(b)

Proposition 5.2.3. Let A,B and C be G-modules. Suppose that a ∈ Hp(G,A), b ∈
Hq(G,B) and s ∈ Hr(G,C). Then

1. The cup product is anti commutative

a ^ b = (−1)pq(b ^ a)

under the canonical isomorphism

Hp+q(G,A⊗B) ∼= Hq+p(G,B ⊗ A)
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2. The cup product is associatiave

a ^ (b ^ c) = (a ^ b) ^ c

under the canonical isomorphism

Hp+q+r(G,A⊗ (B ⊗ C)) ∼= Hp+q+r(G, (A⊗B)⊗ C)

Proof. The Proposition follows immediately from the properties of the tensor product in
dimensions p = q = r = 0 and then dimension shfiting for the general cases.

5.3 Explicit Formulae for Low-Dimensional Cup Products

Throughout this section, A and B shall be G-modules. By ap and bq, we shall mean a
p-cocycle of A and a q-cocycle of B.

Proposition 5.3.1. We have that a1 ^ b−1 = x0 ∈ H0(G,A⊗B) where

x0 =
∑
τ∈G

a1(τ)⊗ bτ−1

Proof. Recall that we have exact sequences

0 A A′ A′′ 0

0 A⊗B A′ ⊗B A′′ ⊗B 0

where A′ = Z[G] ⊗ A and A′′ = JG. We shall identify A with its image in A′ and A ⊗ B
with its image in A′ ⊗ B in order to ease notation. Since A′ is G-induced, it has trivial
cohomology. We may thus choose a a′0 ∈ A′ such that a1 = ∂1(a

′
0) and

a1(τ) = a′τ0 − a′0
for all τ ∈ G. Let a′′0 ∈ A′′G be the image of a′0 in A′′. Then δ0(a′′0) = a1. Hence

a1 ^ b−1 = δ0(a′′0) ^ b−1

= δ−1(a′′0 ^ b−1) (Theorem 5.1.1)

= δ−1(a′′0 ⊗ b−1)
= ∂0(a′0 ⊗ b−1)
= NG(a′0 ⊗ b−1)

=
∑
τ∈G

a′τ0 ⊗ bτ−1

=
∑
τ∈G

(a1(τ) + a′0)⊗ bτ−1

=
∑
τ∈G

[(a1(τ)⊗ bτ−1) + (a′0 ⊗ bτ−1)]

=
∑
τ∈G

a1(τ)⊗ bτ−1 + a′0 ⊗NGb−1

=
∑
τ∈G

a1(τ)⊗ bτ−1 (since NGb−1 = 0)
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Proposition 5.3.2. Let σ ∈ G and denote by σ the element of H−2(G,Z) corresponding to
σ[G,G] under the isomorphism H−2(G,Z) ∼= Gab. Then

a1 ^ σ = a1(σ) ∈ H−1(G,A)

Proof. Recall that we have the exact sequence

0 A⊗ IG A⊗ Z[G] A 0
ψ

where ψ is the composite

A⊗ Z[G] A⊗ Z A

a⊗

(∑
σ∈G

nσσ

)
a⊗

(∑
σ∈G

nσ

) ∑
σ∈G

nσa

This yields an isomorphism

δ−1 : H−1(G,A)→ H0(G,A⊗ IG)

It thus suffices to show that

δ−1(a1 ^ σ) = δ−1(a1(σ))

Choosing the preimage a1(σ)⊗ 1 = ψ−1(a1(σ)), and setting x0 = ∂0(a1(σ)⊗ 1) we see that

δ−1(a1(σ)) = ∂0(a1(σ)⊗ 1) = NG(a1(σ))⊗ 1 =
∑
τ∈G

a1(σ)τ ⊗ τ

On the other hand, the isomorphism δ−2 : H−2(G,Z) → H−1(G, IG) sends σ to σ − 1 by
Theorem 3.3.6 so we have

δ−1(a1 ^ σ) = −(a1 ^ δ−2(σ)) (Theorem 5.1.1)

= −(a1 ^ σ − 1) = y0

Now, Proposition 5.3.1 implies that

y0 = −

(∑
τ∈G

a1(τ)⊗ τ(σ − 1)

)
=
∑
τ∈G

a1(τ)⊗ τ −
∑
τ∈G

a1(τ)⊗ τσ

Since a1 is a 1-cocycle, we have

y0 =
∑
τ∈G

a1(τ)⊗ τ −
∑
τ∈G

(a1(τσ)− a1(σ)τ ))⊗ τσ

=
∑
τ∈G

a1(σ)τ ⊗ τσ

Hence

y0 − x0 =
∑
τ∈G

a1(σ)τ ⊗ τ(σ − 1) = NG(a1(σ)⊗ (σ − 1))

Whence y0 = x0.
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Proposition 5.3.3. Let σ ∈ G and denote by σ the element of H−2(G,Z) corresponding to
σ[G,G] under the isomorphism H−2(G,Z) ∼= Gab. Then

a2 ^ σ =
∑
τ∈G

a2(τ, σ) ∈ H0(G,A)

so that we have an induced homomorphism

a2 ^ − : Gab → AG/NGA

Proof. Consider the exact sequence

0 A A′ A′′ 0

with A′ = A⊗Z[G] and A′′ = A⊗JG. Since H2(G,A′) = 0, there exists a 1-cochain a′1 such
that a2 = ∂2(a

′
1) so that

a2(τ, σ) = a′1(σ)τ − a′1(τσ) + a′1(τ)

Now, the image a′′1 of a′1 is a 1-cocycle satisfying a2 = δ1(a
′′
1). Hence

a2 ^ σ = δ1(a′′1) ^ σ

= δ0(a′′1 ^ σ) (Theorem 5.1.1)

= δ0(a′′1(σ)) (Proposition 5.3.2)

= ∂0(a′1(σ))

=
∑
τ∈G

a′1(σ)τ

=
∑
τ∈G

a2(τ, σ) + a′1(τσ)− a′1(τ)

=
∑
τ∈G

a2(τ, σ)

6 Cohomology of Cyclic Groups

Throughout this section, G will be a cyclic group of order n.

6.1 Cyclic Groups have Periodic Cohomology

Lemma 6.1.1. Let σ be a generator of G. Then IG = Z[G] · (σ − 1).

Proof. Recall that IG is the free abelian group on { τ − 1 }1 6=τ∈G. Observe that for k ≥ 0 we
have

σk − 1 = (σ − 1)(xk−1 + xk−2 + · · ·+ x1 + 1)

and so, in fact, IG is the principal ideal of Z[G] generated by σ − 1.

Theorem 6.1.2. Let σ be a generator of G and A a G-module. Then for all q ∈ Z we have

Hq(G,A) ∼= Hq+2(G,A)
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Proof. It suffices to exhibit an isomorphism H−1(G,A) ∼= H1(G,A). The general case
follows via the dimension shifting isomorphisms

Hq(G,A) ∼= H−1(G,Aq+1) ∼= H1(G,Aq+1) ∼= Hq+2(G,A)

Now, fix a 1-cocycle a1 of A. Then for k ≥ 1 we have

x(σk) = x(σk−1)σ + x(σ)

= x(σk−2)σ
2

+ x(σ)σ + x(σ)

=
∑

1≤i≤k−1

x(σ)σ
i

Hence

NG(x(σ)) =
n−1∑
i=0

x(σ)σi = x(σn) = x(1) = 0

whence x(σ) is a (−1)-cocycle of A. Conversely, let a ∈ NGA be a (−1)-cocycle of A. Then
setting

x(σk) =
k−1∑
i=0

aσ
i

for all 1 ≤ k ≤ n − 1 defines a 1-cocycle of A. Hence the assignment x 7→ x(σ) defines an
isomorphism Z1

∼= Z−1. Under this isomorphism we have

x ∈ R1 ⇐⇒ x(σk) = aσ
k − a (a ∈ A)

⇐⇒ x(σ) = aσ − a ⇐⇒ x(σ) ∈ IGA = R−1

and so 1-coboundaries are mapped to (−1)-coboundaries and we get an induced isomorphism
of cohomology groups.

6.2 Hebrand Quotient

Definition 6.2.1. Let A be an abelian group and f, g ∈ End(A) such that f ◦ g = 0 and
g ◦ f = 0 so that im(g) ⊆ ker(f) and im(f) ⊆ ker(g). We define the Herbrand quotient
of A with respect to f and g to be

qf,g(A) =
[ker(f) : im(g)]

[ker(g) : im(f)]

provided both indices are finite.

Definition 6.2.2. Let A be a G-module and consider the endomorphisms

D = σ − 1, N = 1 + σ + · · ·+ σn−1

so that D ◦N = 0 = N ◦D. Note that

ker(D) = AG, im(N) = NGA, ker(N) = NGA, im(D) = IGA

If H0(G,A) and H−1(G,A) are finite then we say that A is a Herbrand module and
denote

h(A) = qD,N(A) =
[ker(D) : im(N)]

[ker(N) : im(D)]
=
|H0(G,A)|
|H−1(G,A)|

=
|H2(G,A)|
|H1(G,A)|
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Proposition 6.2.3. Let

0 A B C 0

be an exact sequence in Gmod. If any two of A,B and C are Herbrand modules then so is
the third and

h(B) = h(A) · h(C)

Proof. Consider the long exact sequence of cohomology groups

H−1(G,A) H−1(G,B)

H0(G,C) H−1(G,C)

H0(G,B) H0(G,A)

Now recall that given an exact sequence {Gi }1≤i≤n of abelian groups we have the identity∏n
i=1 |Gi|(−1)

i
= 1. It then follows that

|H−1(G,A)| · |H−1(G,C)| · |H0(G,B)| = |H−1(G,B)| · |H0(G,A)| · |H0(G,C)|

And hence if any two of A,B or C are Herbrand modules, so is the third and

h(B) =
|H0(G,B)|
H−1(G,B)

=
|H0(G,A)| · |H0(G,C)|
|H−1(G,A)| · |H−1(G,C)|

= h(A)h(C)

Proposition 6.2.4. Suppose that A is a Herbrand G-module with the trivial G-action and
n : A→ A is the multiplication-by-n map. Then

h(A) = q0,n(A)

Proof. This is immediate from the fact that D = σ− 1 is identically zero and NG is just the
multiplication-by-n map.

Corollary 6.2.5. Let

0 A B C 0

be an exact sequence in Gmod. If any two of q0,n(A), q0,n(B) and q0,n(C) are defined then so
is the third and

q0,n(B) = q0,n(A) · q0,n(C)

Proposition 6.2.6. Let A be a finite group and f, g ∈ End(A) such that f ◦ g = g ◦ f = 0.
Then qf,g(A) = 1.

Proof. By an isomorphism theorem, we have that A/ ker(f) ∼= im(f) so that |A| = | im(f)| ·
| ker(f)|. On the other hand, we also have that A/ ker(g) ∼= im(g) so that also |A| = | im(g)| ·
| ker(g)|. It then follows that [ker(f) : im(g)] = [ker(g) : im(f)] and so qf,g(A) = 1.
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Corollary 6.2.7. Let A and B be Herbrand G-modules such that A has finite index in B.
Then h(A) = h(B).

Proof. We have that

1 = h(A/B) =
h(A)

h(B)

and so h(A) = h(B) as claimed.

Lemma 6.2.8. Let A be an abelian group and f, g ∈ End(A). Then

q0,gf (A) = q0,g(A) · q0,f (A)

where all three of these quotients are defined when any two of them are.

Proof. Consider the commutative diagram with exact rows

0 g(A) ∩ ker(f) g(A) (f ◦ g)(A) 0

0 ker(f) A f(A) 0

f

Applying the Snake Lemma yields an exact sequence

0 ker(f)/(g(A) ∩ ker(f)) A/g(A) f(A)/(f ◦ g)(A) 0

so that

[A : (g ◦ f)(A)]

[ker(g ◦ f)]
=

[A : g(A)] · |g(A) ∩ ker(f)|
| ker(f)|

Now observe that

ker(f ◦ g)

ker(f)
=
g−1(g(A) ∩ ker(f))

g−1(0)
∼= g(A) ∩ ker(f)

so that, in fact,

[A : (f ◦ g)(A)]

| ker(f ◦ g)|
=

[A : g(A)]

| ker(g)|
· [A : f(A)]

| ker(f)|

Now, this is symmetric in f and g so we get

q0,gf (A) =
[A : (g ◦ f)(A)]

| ker(g ◦ f)|
=

[A : g(A)]

| ker(g)|
· [A : f(A)]

| ker(f)|
= q0,g(A) · q0,f (A)

Theorem 6.2.9. Suppose that G has order prime to p and A a G-module. If q0,p(A) is
defined then q0,p(A) is defined and A is a Herbrand module. In particular

h(A)p−1 =
q0,p(A

G)p

q0,p(A)

Proof. Fix a generator σ ∈ G and let D = σ − 1. Observe that we have an exact sequence
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0 AG A IGA 0D

so that IGA is a factor group of A. IGA is also a subgroup of A and so it follows that if
q0,p(A) is defined then so is q0,p(IGA). By Corollary 6.2.5, it follows that q0,n(AG) is defined
and

q0,p(A) = q0,p(A
G) · q0,p(IGA)

Moreover, the action of G on AG is trivial so Proposition 6.2.4 implies that h(AG) = q0,p(A
G).

We now determine the quotient q0,p(IGA). By Corollary 1.2.7, the ideal ZNG annihilates
the Z[G]-module IGA. Hence IGA has the natural structure of a Z[G]/ZNG-module. Now
osberve that we have a canonical isomorphism of rings

Z[G]/ZNG → Z[X]/(1 +X + · · ·+Xp−1)

σ → X

By Algebraic Number Theory, the latter ring is isomorphic to the ring of integers Z[ζ] of
the number field Q(ζ) where ζ is a pth root of unity. We thus have an isomorphism

Z[G]/ZNG → Z[ζ]

σ → ζ

By the Elementary Theory of Cyclotomic Fields we have the factorisation

p = (ζ − 1)p−1 · e

for some e ∈ Z[ζ]×. We thus have a similar decomposition

p = (σ − 1)p−1 · ε

in Z[G]/ZNG for some unit ε. Now, the endomorphism of IGA given by multiplication by ε
is an automorphism so that q0,ε(IGA) = 1. Hence

q0,p(IGA) = q0,Dp−1(IGA) ◦ q0,ε(IGA) (Lemma 6.2.8)

= q0,Dp−1(IGA)

= q0,D(IGA)p−1 (Lemma 6.2.8)

= qD,0(IGA)1−p

= qD,N(IGA)1−p (NG ≡ 0)

= h(IGA)1−p

so we thus have the expressions

q0,p(A
G) = h(AG), q0,p(IGA) = h(IGA)1−p, q0,p(A) = h(AG) · h1−pIG(A)

On the other hand, Proposition 6.2.3 implies that

h(A)p−1 = h(AG)p−1 · h(IGA)p−1

so that

h(A)p−1 =
q0,p(A

G)p

q0,p(A)

as claimed.
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Theorem 6.2.10. Suppose that G is cyclic of prime order p and let A be a finitely generated
G-module. If α = rankZ(A) and β = rankZ(AG) then

h(A) = p(pβ−α)/(p−1)

Proof. By the Structure Theorem for Finitely Generated Modules over a PID, we have that
A = M ⊕ N for some torsion module Z and free Z-module N . Moreover, α = rankZ(A) =
rankZ(N) and β = rankZ(AG) = rankZ(NG). Thus Corollary 6.2.7 implies that

h(A)p−1 = h(N)p−1 =
q0,p(N

G)p

q0,p(N)

Now,

q0,p(N
G) =

[NG : pNG]

| ker(p)|
= [NG : pNG] = pβ

and

a0,p(N) =
[N : pN ]

| ker(p)|
= pα

so that h(A) = p(pβ−α)/(p−1) as claimed.

7 Tate’s Theorem

Throughout this section, G shall be a finite group.

Theorem 7.1 (Theorem of Cohomological Triviality). Let A be a G-module. Suppose there
exists q0 ∈ Z such that

Hq0(H,A) = Hq0+1(H,A) = 0

for all subgroups H ⊆ G. Then A has trivial cohomology.

Proof. It suffices to prove that for all subgroups H ⊆ G the assumption Hq0(H,A) =
Hq0+1(H,A) = 0 implies that Hq0−1(H,A) = Hq0+2(H,A) = 0. Furthermore, it suffices to
consider only the case where q0 = 1. The general case follows via dimension shifting.

So assume that H1(H,A) = H2(H,A) = 0 for all subgroups H ⊆ G. We need to show
that H0(H,A) = H3(H,A) = 0 for all subgroups H ⊆ G. We shall prove this by induction
on |G|. Clearly, the case where |G| = 1 is trivial. So assume that for all groups C with
1 ≤ |C| ≤ |G| − 1, the statement holds. In particular, it holds for all proper subgroups of
G so we just need to show that, in fact, the statement holds for G itself. Fix a prime p and
suppose that G is not a p-group. Then all the Sylow subgroups of G are necessarily proper
subgroups Gl of G and so, by the induction hypothesis, satisfy H0(Gl, A) = H3(Gl, A) = 0.
But Proposition 4.2.7 then implies that H0(G,A) = H3(G,A) = 0.

We may thus assume that G is a p-group. Let pm = |G|. Sylow’s Theorems implies
that there exists a subgroup H ⊆ G of order pm−1. Then G/H is cyclic of order p. By the
induction hypothesis, we have that

H0(H,A) = H3(H,A) = 0 (q = 1, 2, 3)
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Now, Theorems 4.1.8 and 4.1.9 provide an isomorphism

infq : Hq(G/H,AH)→ Hq(G,A) (q = 1, 2, 3)

Since H1(G,A) = 0 we then have that H1(G/H,AH) = 0. But G/H is cyclic so applying
Theorem 6.1.2 yields

0 = H1(G/H,AH) ∼= H3(G/H,AH) ∼= H3(G,A)

A similar argument shows that H0(G/H,AH) = 0. Then

AG = (AH)G/H ∼= NG/HA
H

∼= NG/HNHA (H0(H,A) = 0)

= NGA

and so H0(G,A) = 0. This completes the proof of the Theorem.

Theorem 7.2. Let A be a G-module. Suppose that for each subgroup H ⊆ G we have

1. H−1(H,A) = 0

2. H0(H,A) is cyclic of order |H|

If a is a cohomology class generating H0(G,A) then the map

a ^ − : Hq(G,Z)→ Hq(G,A)

is an isomorphism.

Proof. Let B = A ⊕ Z[G] and denote by i : A → B the canonical injection. Then the
induced homomorphism

i : Hq(H,A)→ Hq(H,B)

is an isomorphism for all subgroups H ⊆ G. Moreover, Z[G] has trivial cohomology so it
suffices to show that the map i ◦ (a ^ −) is an isomorphism. To this end, fix a 0-cocycle
a0 ∈ AG such that a = a0 +NGA is a generator for H0(G,A). Now consider the map

f : Z→ B

n 7→ a0 · n+NG · n

Then f is clearly injective thanks to the term NG · n. Now let cq ∈ Hq(G,Z). Then

f(cq) = f ◦ cq = a0 · cq +NGcq = a0 · cq + |G| · cq = a0 · cq

since Hq(G,Z) has |G|-torsion. On the other hand, we see that

a ^ cq = a0 ⊗ cq = cq · a0

via the isomorphism A⊗ Z ∼= A sending n⊗ a to n · a. It thus suffices to show that f is an
isomorphism.

To this end, consider the exact sequence

0 Z B C 0
f g
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where C is some G-module and g : B → C is a map for which Z is its kernel via f . Now fix
a subgroup H ⊆ G. By hypothesis we have that

0 = H−1(H,A) = H−1(H,B)

and H1(H,Z). Then the long exact cohomology sequence corresponding to the short exact
sequence gives

0 H−1(H,Z) H−1(H,C) H0(H,Z) H0(H,B) H0(H,C) 0
f

Since a generates H0(G,A) ∼= H0(G,B), it follows that f is an isomorphism. Hence
H−1(H,C) = H0(H,C) = 0. Appealing to Theorem 7.1 shows that, necessarily, Hq(G,C) =
0 for all q ∈ Z. It then follows from the long exact cohomology sequence associated to the
short exact sequence above that f : Hq(G,Z)→ Hq(G,B) is an isomorphism as claimed.

Theorem 7.3 (Tate). Let A be a G-module. Suppose that for each subgroup H ⊆ G we
have

1. H1(H,A) = 0

2. H2(H,A) is cyclic of order |H|

If a is a cohomology class generating H2(G,A) then the map

a ^ − : Hq(G,Z)→ Hq+2(G,A)

is an isomorphism. Moreover, for any subgroup H ⊆ G, res2(a) generates H2(H,A) and the
map

res2(a) ^ − : Hq(H,Z)→ Hq+2(H,A)

is an isomorphism.

Proof. Fix a subgroup H ⊆ G. Dimension shifting provides us with an isomorphism

δ2 : Hq(H,A2)→ Hq+2(H,A)

so that the assumptions imply that H−1(H,A2) = 0 and H0(H,A2) is cyclic of order |H|.
Moreover, the generator of H0(H,A2) is the image of the generator δ−2(a) ∈ H2(G,A).
Theorem 7.2 then implies that δ−2(a) ^ − is an isomorphism. By the definition of the cup
product, we have a commutative diagram

Hq(G,Z) Hq(G,A2)

Hq(G,Z) Hq+2(G,A)

δ−2^−

id δ2

a^−

Since the vertical maps are both isomorphisms, it follows that a ^ − is also an isomorphism.
For the second part of the Theorem, observe that (cores2 ◦ res2)(a) = [G : H] · a. Since

H2(G,A) is cyclic of order |G|, it follows that |H| divides the order of res2(a) and so res2(a)
generates H2(H,A).
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Notation Index

Symbol Meaning Page

Am JG ⊗ · · · ⊗ JG︸ ︷︷ ︸
m times

⊗A 21

A−m IG ⊗ · · · ⊗ IG︸ ︷︷ ︸
m times

⊗A 21

Aq The q-cochains of the G-module A 10

coresq The q-corestriction map coresq : Hq(H,A)→ Hq(G,A) associated
to the G-module A and a subgroup H / G. 30

^ The cup product map ^: Hp(G,A)×Hq(G,B)→ Hp+q(A⊗B)
for the G-modules A and B. 34

δq The connecting map δq : Hq(G,C)→ Hq+1(G,A) 14

∂q The q-differential map ∂q : Aq−1 → Aq 10

dq The q-differential map dq : Xq → Xq−1 8

Gab The abelianisation of the group G 22

[G,G] The commutator subgroup of the group G 22

Gmod The category of G-modules associated to the group G 2

h(A) The Herbrand quotient of the Herbrand module G: h(A) = qD,N(A) 41

Hq(G,A) The Tate cohomology group of dimension q associated to the
G-module A. 11

IG The kernel of the augmentation map
∑

σ∈G nσσ 7→
∑

σ∈G nσ 3

IGA
{∑

σ∈G nσ(aσσ − aσ) | aσ ∈ A
}

5

infq The q-inflation map infq : Hq(G/H,AH)→ Hq(G,A) associated
to the G-module A and a normal subgroup H / G. 23

JG The cokernel of the coaugmentation map n 7→ n ·NG 3

NGA The norm group of the G-module A: {NGa | a ∈ A } 5

NGA { a ∈ A | NGa = 0 } 5

qf,g(A) The Herbrand quotient of A with respect to the endomorphisms f
and g 41

resq The q-restriction map resq : Hq(G,A)→ Hq(H,A) associated to
the G-module A and a subgroup H / G. 24

R[G] The group ring of the group G over the commutative ring R 2

RA
q The q-coboundaries associated to the G-module A 11

Ver The Verlagerung from a group G to a subgroup H Ver : Gab → Hab 29

Xq The free G-module on all q-cells when q ≥ 1 or q ≤ −2,
X0 = X−1 = Z[G] 8

ZA
q The q-cocycles associated to the G-module A 11
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