# The Main Conjecture of Iwasawa Theory over $\mathbb{Q}$ 

Alexandre Daoud<br>alex.daoud@cantab.net

June 14, 2019

## 1 Cyclotomic Units

Definition 1.1. Let $m \neq 2(\bmod 4)^{1}$ and $\zeta_{m}$ a primitive $m^{t h}$ root of unity. We define the group of cyclotomic units of $F=\mathbb{Q}\left(\zeta_{m}\right)$ to be the multiplicative group

$$
\mathcal{E}_{m}=\left\langle \pm \zeta_{m}, \zeta_{m}^{a}-1 \mid 1<a<m\right\rangle \cap \mathcal{O}_{F}^{\times}
$$

Moreover, we define the real cyclotomic units to be $\mathcal{E}_{m}^{+}=\mathcal{E}_{m} \cap F^{+}$.
The following is a consequence of the analytic class number formula:
Theorem 1.2. Let $h_{m}^{+}$be the class number of $F=\mathbb{Q}\left(\zeta_{m}\right)^{+}$. Then

$$
h_{m}^{+}=\left[\mathcal{O}_{F+}^{\times}: \mathcal{E}_{m}^{+}\right]=\left[\mathcal{O}_{F}^{\times}: \mathcal{E}_{m}\right]
$$

## 2 Euler Systems

For each $k>1$, fix a primitive $k^{t h}$ root of unity $\zeta_{k}$ such that $\zeta_{k l}^{l}=\zeta_{k}$ for all $k$ and $l$.
Fix an odd prime $p$. Let $\mathcal{R}$ be the collection of square-free products of primes coprime to $p$. For each $n \geq 1$, let $F_{n}=\mathbb{Q}\left(\zeta_{p^{n}}\right)^{+}=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. For each $r \in \mathcal{R}$, let $F_{n}^{r}=F_{n}\left(\zeta_{r}\right)$. By $q \in \mathcal{R}$ we shall always mean a prime. Visually, we have the following situation for each $r, q \in \mathcal{R}$ :


### 2.1 The Universal Euler System

Denote $G_{r}=\operatorname{Gal}\left(F_{n}^{r} / F_{n}\right)$. Then we have a natural isomorphism $G_{r}=\prod_{q \mid r} G_{q}$.

[^0]Definition 2.1. We define the norm operator of $\mathbb{Z}\left[G_{r}\right]$ to be

$$
N_{r}=\prod_{q \mid r} N_{q}=\prod_{q \mid r} \sum_{\sigma_{q} \in G_{q}} \sigma_{q}
$$

Now let $\sigma_{q}$ be a generator of $G_{q}$. We define the derivative operator of $\mathbb{Z}\left[G_{r}\right]$ to be

$$
D_{r}=\prod_{q \mid r} D_{q}=\prod_{q \mid r} \sum_{i=i}^{q-2} i \sigma_{q}^{i}
$$

Definition 2.2. Given $n \in \mathbb{N}$ and $r \in \mathcal{R}$, let $x_{n, r}$ be a symbol. Let $Y_{n, r}$ be the free $\mathbb{Z}\left[\operatorname{Gal}\left(F_{n}^{r} / F\right)\right]$-module on the set $\left\{x_{n, s}: s \mid r\right\}$. Moreover, let $Z_{n, r}$ be the submodule of $Y_{n, r}$ generated by the relations

- $G_{t / s}$ acts trivially on $x_{n, s}$
- If $q s \mid r$ then $N_{q} x_{n, q s}=\left(1-\operatorname{Fr}_{q}^{-1}\right) x_{n, s}$
where $\mathrm{Fr}_{q}$ is the arithmetic Frobenius at $q$ in $\operatorname{Gal}\left(F_{n}^{s} / K\right)$. Finally, we set $X_{n, r}$ to be the factor module $X_{n, r}=Y_{n, r} / Z_{n, r}$.

Definition 2.3. We define the universal Euler system to be the direct limit

$$
\mathcal{X}=\underset{n, r}{\lim } X_{n, r}
$$

taken with respect to the norm operators. An Euler system is a $G_{K^{-}}$-equivariant map

$$
\eta: \mathcal{X} \rightarrow \bigcup_{n, r} F_{n}^{r \times}
$$

Remark. Specifiying an Euler system is equivalent to specifying a collection of global units

$$
\left\{\boldsymbol{\eta}(n, r) \in F_{n}^{r} \mid n>1, r \in \mathcal{R}\right\}
$$

satisfying the norm-compatibility relations

1. $\mathrm{N}_{F_{n}^{q r} / F_{n}^{r}} \boldsymbol{\eta}(n, q r)=\boldsymbol{\eta}(n, r)^{1-\mathrm{Fr}_{q}^{-1}}$
2. $\mathrm{N}_{F_{n+1}^{r} / F_{n}^{r}} \boldsymbol{\eta}(n+1, r)=\boldsymbol{\eta}(n, r)$

Theorem 2.4. For each $n \geq 1$ and $r \in \mathcal{R}$, write $\tau_{n, r}=\operatorname{Fr}_{p}^{-n}\left(\zeta_{r}\right)$. Define

$$
\boldsymbol{\eta}(n, r)=\left(\zeta_{p^{n}} \tau_{n, r}-1\right)\left(\zeta_{p^{n}}^{-1} \tau_{n, r}-1\right)
$$

Then each $\boldsymbol{\eta}(n, r)$ is a cylotomic unit and $\boldsymbol{\eta}$ is an Euler system.
Here we have used $\tau_{n, r}$ to ensure the second norm-compatibility relation. Without it we can still prove the theorems in the next section but it is nice to have in generality.

### 2.2 Kolyvagin's Derivative Construction

Let $M$ be a power of $p$ and define

$$
\mathcal{R}_{n, M}=\left\{r \in \mathcal{R}: \forall q \mid r, q \text { splits completely in } F_{n} \text { and } q-1 \equiv 0(\bmod M)\right\}
$$

Proposition 2.5. Let $r \in \mathcal{R}_{n, M}$. Then $D_{r}\left(x_{n, r}\right) \in\left(X_{n, r} / M X_{n, r}\right)^{G_{r}}$.
Proposition 2.6. Let $\boldsymbol{\eta}$ be an Euler system. Then there exists a $\beta_{r} \in F_{n}^{r \times}$ which is unique modulo $F_{n}^{\times}$ such that

$$
\frac{\boldsymbol{\eta}(n, r)^{D_{r}}}{\beta_{r}^{M}} \in F_{n}^{r \times}
$$

We then define a map

$$
\begin{aligned}
\kappa_{n, M}: \mathcal{R}_{n, M} & \rightarrow F_{n}^{r \times} /\left(F_{n}^{r \times}\right)^{M} \\
r & \mapsto\left[\frac{\boldsymbol{\eta}(n, r)^{D_{r}}}{\beta_{r}^{M}}\right]
\end{aligned}
$$

For the rest of this section, fix $n \in \mathbb{N}$ and denote $L=F_{n}$. Let $M_{L}$ be the collection of finite primes of $L$ and $I_{L}$ the group of fractional ideals of $L$ written additively:

$$
I_{L}=\bigoplus_{\mathfrak{q} \in M_{L}} \mathbb{Z} \mathfrak{q}
$$

Given a finite prime $q$ of $K$, let $I_{L}^{q}$ be

$$
I_{L}^{q}=\bigoplus_{\mathfrak{q} / q} \mathbb{Z} \mathfrak{q}
$$

Given $y \in L^{\times}$, let $(y) \in I_{L}$ be the principal ideal generated by $y$, and $[y]_{q}$ the projection of $(y)$ into $I_{L}^{q} / M I_{L}^{q}$.
Proposition 2.7. Let $q \in \mathcal{R}_{n, M}$. Then there exists a $\operatorname{Gal}(L / K)$-equivariant homomorphism

$$
\phi_{q}: L^{\times} /\left(L^{\times}\right)^{M} \rightarrow I_{L}^{q} / M I_{L}^{q}
$$

Theorem 2.8. Let $\boldsymbol{\eta}$ be an Euler system and $q \in \mathcal{R}_{n, M}$. Then

$$
\left[\kappa_{n, M}(r)\right]_{q}= \begin{cases}\phi_{q}\left(\kappa_{n, M}(r / q)\right) & \text { if } q \mid r \\ 0 & \text { if } q \nmid r\end{cases}
$$

The following proposition gives us a supply of primes in $\mathcal{R}_{n, M}$ to work with. Let $p>2$ be prime and $C$ be the $p$-part of the ideal class group of $F=\mathbb{Q}\left(\zeta_{p}\right)^{+}$.

Proposition 2.9. Let $[\mathbf{c}] \in C$ be an ideal class, $W$ a finite $G$-submodule of $L^{\times} /\left(L^{\times}\right)^{M}$ and a $G=\operatorname{Gal}(L / K)$ equivariant homomorphism

$$
\psi: W \rightarrow(\mathbb{Z} / M \mathbb{Z})[G]
$$

Then there are infinitely many primes $\mathfrak{q}$ of $L$ such that

1. $q \in \mathcal{R}_{n, M}$ where $q$ is the rational prime lying under $\mathfrak{q}$
2. $\mathfrak{q} \in[\mathfrak{c}]$
3. For all $w \in W,[w]_{q}=0$ and there exists $u \in \mathbb{Z} / M \mathbb{Z}^{\times}$such that $\phi_{q}(w)=u \psi(w) \mathfrak{q}$

## 3 The Main Conjecture

Fix a rational prime $p>2$. Denote $K_{\infty}=\bigcup_{n \geq 1} K_{n}$

$$
\Delta=\operatorname{Gal}\left(K_{1} / \mathbb{Q}\right)=(\mathbb{Z} / p \mathbb{Z})^{\times}, \quad \Gamma=\operatorname{Gal}\left(K_{\infty} / K_{1}\right)=\mathbb{Z}_{p}
$$

so that $\operatorname{Gal}\left(K_{\infty} / \mathbb{Q}\right)=\Delta \times \operatorname{Gal}\left(K_{\infty} / K_{1}\right)$. Let $C_{n}$ be the $p$-part of the ideal class group of $K_{n}, U_{n}$ the group of principal $p$-units of $K_{n}$ and $E_{n}$ the group of global units of $K_{n}$. Denote

$$
\overline{E_{n}}=\overline{E_{n} \cap U_{n}}, \quad V_{n}=\overline{\mathcal{E}_{n} \cap U_{n}}
$$

and
all with respect to norm maps. For $n \leq \infty$, let $\Omega_{n}$ be the maximal abelian $p$-extension of $K_{n}$ unramified outside of $p$. Denote $X_{n}=\operatorname{Gal}\left(\Omega_{n} / K_{n}\right)$. Let

$$
\Lambda=\mathbb{Z}_{p}[[\Gamma]]=\underset{n}{\lim _{n}} \mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{n} / K_{1}\right)\right]
$$

be the Iwasawa algebra. For each character $\chi \in \widehat{\Delta}$ define the $\chi$-idempotent

$$
e_{\chi}=\frac{1}{p-1} \sum_{\delta \in \Delta} \chi^{-1}(\delta) \delta
$$

Given a $\mathbb{Z}_{p}[\Delta]$-module $Y$, let $Y^{\chi}=e_{\chi} Y$ be its $\chi$-isotypical part.

### 3.1 A first consequence of Kolyvagin's Theory

Theorem 3.1. For every character $\chi$ of $\Delta$ and every $n,\left|C_{n}^{\chi}\right|$ divides $\left|\left(E_{n} / \mathcal{E}_{n}\right)^{\chi}\right|$.
Corollary 3.2 (Mazur-Wiles, Kolyvagin). For every character $\chi$ of $\Delta$ and every $n$, we have

$$
\left|C_{n}^{\chi}\right|=\left|\left(E_{n} / \mathcal{E}_{n}\right)^{\chi}\right|
$$

Proof. By Theorem 1.2 (the analytic class number formula), we have that

$$
\prod_{\chi}\left|C_{n}^{\chi}\right|=\left|C_{n}\right|=\left|E_{n} / \mathcal{E}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\right|=\prod_{\chi}\left|E_{n}^{\chi} / \mathcal{E}_{n}^{\chi}\right|
$$

The Corollary then follows by application of the previous Theorem.

### 3.2 The Main Conjecture

Theorem 3.3. $C_{\infty}^{\chi}, E_{\infty}^{\chi}, V_{\infty}^{\chi}, U_{\infty}^{\chi}, X_{\infty}^{\chi}$ are all finitely-generated $\Lambda$-modules. $C_{\infty}^{\chi}$ is a torsion $\Lambda$-module. If $\chi$ is an even character then $X_{\infty}^{\chi}$ and $U_{\infty}^{\chi} / V_{\infty}^{\chi}$ have $\Lambda$-torsion too.

Given a finitely generated torsion $\Lambda$-module $M$, there exists a pseudo-isomorphism $M \sim \bigoplus_{i} \Lambda / f_{i} \Lambda$. Denote $\operatorname{char}(M)=\prod_{i} f_{i} \Lambda$. The Main Conjecture of Iwasawa Theory is the following Theorem of MazurWiles.

Theorem 3.4 (Mazur-Wiles, Main Conjecture). For every even character $\chi$ of $\Delta$ we have

$$
\left(f_{\chi}\right)=\operatorname{char}\left(C_{\infty}^{\chi}\right)=\operatorname{char}\left(\left(E_{\infty} / V_{\infty}\right)^{\chi}\right)=\left(h_{\chi}\right)
$$

### 3.3 The Strategy

Let $\gamma$ be a topological generator of $\Gamma$. For each $n \in \mathbb{N}$, let $\Gamma_{n}=\Gamma / \Gamma^{p^{n}}=\operatorname{Gal}\left(K_{n} / K_{1}\right)$. Recall that we have an isomorphism

$$
\begin{aligned}
\mathbb{Z}_{p}\left[\Gamma_{n}\right] & \rightarrow \mathbb{Z}_{p}[T] /\left((1+T)^{p^{n}}-1\right) \\
\gamma & \mapsto 1+T
\end{aligned}
$$

Hence letting $I_{n}=\left(\gamma^{p^{n}}-1\right) \Lambda$ we have

$$
\Lambda_{n}:=\Lambda / I_{n} \cong \mathbb{Z}_{p}\left[\Gamma_{n}\right]
$$

If $Y$ is a $\Lambda$-module, write

$$
Y_{\Gamma_{n}}=Y / I_{n} Y=Y \otimes_{\Lambda} \Lambda_{n}
$$

The strategy will be to show that $\left(f_{\chi}\right)=\operatorname{char}\left(C_{\infty}^{\chi}\right)$ divides $\left(h_{\chi}\right)=\operatorname{char}\left(\left(E_{\infty} / V_{\infty}\right)^{\chi}\right)$. The Main Conjecture will then follow from the following two algebraic lemmas:

Lemma 3.5. Let $\chi$ be an even character of $\Delta$. Then

1. For all $n, \Lambda_{n} / f_{\chi} \Lambda_{n}$ and $\Lambda_{n} / h_{\chi} \Lambda_{n}$ are finite.
2. There is a positive constant $c$ such that for all $n$ we have

$$
c^{-1} \leq \frac{\left|C_{n}^{\chi}\right|}{\left|\Lambda_{n} / f_{\chi} \Lambda_{n}\right|} \leq c, \quad c^{-1} \leq \frac{\left|{\overline{E_{n}}}^{\chi} / V_{n}^{\chi}\right|}{\Lambda_{n} / h_{\chi} \Lambda_{n}} \leq c
$$

Lemma 3.6. Let $a_{n} \sim b_{n}$ mean that $a_{n} / b_{n}$ is bounded above and below independently of $n$. Let $g_{1}, g_{2} \in \Lambda$ such that $g_{1} \mid g_{2}$ and $\left|\left(\Lambda / g_{1} \Lambda\right)_{\Gamma_{n}}\right| \sim\left|\left(\Lambda / g_{2} \Lambda\right)_{\Gamma_{n}}\right|$. Then $g_{1} \Lambda=g_{2} \Lambda$.

We can now prove the Main Conjecture:

Proof. Denote $f=\prod_{\chi \text { even }} f_{\chi}$ and $h=\prod_{\chi \text { even }} h_{\chi}$. Then the first Lemma and the Mazur-Wiles Theorem imply that

$$
\begin{aligned}
\left|(\Lambda / f \Lambda)_{\Gamma_{n}}\right| \sim \prod_{\chi \text { even }}\left|\left(\Lambda / f_{\chi} \Lambda\right)_{\Gamma_{n}}\right| \sim \prod_{\chi \text { even }}\left|C_{n}^{\chi}\right|=\left|C_{n}\right|=\left[{\overline{E_{n}}}^{\chi}: V_{n}^{\chi}\right] & =\prod_{\chi \text { even }}\left|{\overline{E_{n}}}^{\chi}: V_{n}^{\chi}\right| \\
& \sim \prod_{\chi \text { even }}\left|\Lambda / h_{\chi} \Lambda\right| \\
& \sim\left|(\Lambda / h \Lambda)_{\Gamma_{n}}\right|
\end{aligned}
$$

By hypothesis, $f \mid h$ so the second Lemma implies that $f \Lambda=g \Lambda$. The division assumption then yields the result.

Hence it suffices to show that $\left(f_{\chi}\right)$ divides $\left(h_{\chi}\right)$.

### 3.4 Some Results from Iwasawa Theory

Theorem 3.7. For every character of $\Delta$, the natural map $\left(C_{\infty}^{\chi}\right)_{\Gamma_{n}} \rightarrow C_{n}^{\chi}$ is an isomorphism. If $\chi$ is even and non-trivial then the natural maps

$$
\left(X_{\infty}^{\chi}\right)_{\Gamma_{n}} \rightarrow X_{n}^{\chi}, \quad\left(U_{\infty}^{\chi}\right)_{\Gamma_{n}} \rightarrow U_{n}^{\chi}, \quad\left(V_{\infty}^{\chi}\right)_{\Gamma_{n}} \rightarrow V_{n}^{\chi}
$$

are isomorphisms.
Theorem 3.8. Let $\chi$ be a non-trivial even character of $\Delta$. Then there is an ideal $\mathcal{A}$ of finite index in $\Lambda$ such that for all $\eta \in \mathcal{A}$ and $n$ there exists a homomorphism $\phi_{n, \eta}:{\overline{E_{n}}}^{\chi} \rightarrow \Lambda_{n}$ such that $\theta_{n, \eta}\left(V_{n}^{\chi}\right)=\eta h_{\chi} \Lambda_{n}$.

Theorem 3.9. There exists an ideal $\mathcal{B}$ of finite index in $\Lambda$ and for each $n$ ideal classes $\mathfrak{c}_{1}, \ldots, \mathfrak{c}_{n} \in C_{n}^{\chi}$ such that the annihilator $\operatorname{Ann}\left(\mathfrak{c}_{i}\right)$ of $\mathfrak{c}_{i}$ in $C_{n}^{\chi} /\left(\Lambda \mathfrak{c}_{1} \oplus \cdots \oplus \Lambda \mathfrak{c}_{i-1}\right)$ satisfies $\mathcal{B} \operatorname{Ann}\left(\mathfrak{c}_{i}\right) \subseteq f_{i} \Lambda_{n}$ where $f_{i}$ is the $i^{\text {th }}$ "summand" of $f_{\chi}{ }^{2}$.

Lemma 3.10. Let $\chi$ be an even character of $\Delta$. If $\chi$ is trivial then $f_{\chi}$ and $h_{\chi}$ are units in $\Lambda$.

### 3.5 The Proof of the First Division

For this section, we fix $n$ and write $C=C_{n}, E=\overline{E_{n}}, V=V_{n}$ and $F=K_{n}^{+}$. Note that if $\chi$ is even then we can identify $C^{\chi}$ with the $\chi$-part of the $p$-part of the ideal class group of $F$.

Given a power of $p, M$, a prime $q \in \mathcal{R}_{n, M}$ and $w \in F^{\times}$, we write $(w)_{q} \in I_{q}$ to be the portion of $(w)$ supported on primes lying above $q$ and $[w]_{q}$ for its image in $I_{q} / M I_{q}$. If $\mathfrak{q}$ is a prime of $F$ lying above $q$ then $I_{q}^{\chi}$ is a free $\Lambda_{n}$-module of rank 1 , generated by $\mathfrak{q}^{\chi}$. Define a map

$$
v_{\mathfrak{q}}=v_{\mathfrak{q}, \chi}: F^{\times} \rightarrow \Lambda_{n}
$$

by setting $v_{\mathfrak{q}}(w) \mathfrak{q}^{\chi}=(w)_{q}^{\chi}$. Write $\overline{v_{\mathfrak{q}}}$ for the induced map

$$
\overline{v_{\mathfrak{q}}}: F^{\times} /\left(F^{\times}\right)^{M} \rightarrow \Lambda_{n} / M \Lambda_{n}
$$

which satisfies $v_{\mathfrak{q}}(w) \mathfrak{q}^{\chi}=[w]_{q}^{\chi}$.
Lemma 3.11. Fix $r \in \mathcal{R}_{n, M}$, a prime $q \mid r$ and a prime $\mathfrak{q}$ of $F$ lying above $q$. Let $B$ be the subgroup of $C$ generated by the primes of $F$ dividing $r / l$. Let $\mathfrak{c} \in C^{\chi}$ be the class of $\mathfrak{q}^{\chi}$ and $W$ the $\Lambda_{n}$-submodule of $F^{\times} /\left(F^{\times}\right)^{M}$ generated by $\kappa_{n, M}(r)^{\chi}$. If

1. $\eta, f \in \Lambda_{n}$ are such that $\operatorname{Ann}(\mathfrak{c})$ in $\Lambda_{n}$ of $\mathfrak{c}$ in $C^{\chi} / B^{\chi}$ satisfies $\eta \operatorname{Ann}(\mathfrak{c}) \subseteq f \Lambda_{n}$
2. $\Lambda_{n} / f \Lambda_{n}$
3. $M \geq\left|C^{\chi}\right| \cdot\left|\frac{I_{q}^{\chi} / M I_{q}^{\chi}}{\Lambda_{n}\left[\kappa_{n, M}(r)^{\chi}\right]_{q}}\right|$
then there is a Galois-equivariant map $\psi: W \rightarrow \Lambda_{n} / M \Lambda_{n}$ such that

$$
f \psi\left(\kappa_{n, M}(r)^{\chi}\right)=\eta \overline{v_{\mathfrak{q}}}\left(\kappa_{n, M}(r)\right)
$$

[^1]Theorem 3.12. Let $\chi$ be an even character of $\Delta$. Then $\operatorname{char}\left(C_{\infty}^{\chi}\right)$ divides $\operatorname{char}\left(E_{\infty}^{\chi} / V_{\infty}^{\chi}\right)$.
Proof. First suppose that $\chi$ is trivial. Then Lemma 3.10 implies that the characteristic ideals are trivial so the Theorem then follows immediately.

Now suppose that $\chi$ is not trivial. Observe that $\kappa_{n, M}(1)$ is represented by $\xi=\boldsymbol{\eta}(n, 1)=\left(\zeta_{p^{n}}-1\right)\left(\zeta_{p^{n}}^{-1}-1\right)$ and that $\xi^{\chi}$ generates $V_{n}^{\chi}$. Fix ideal classes $\mathfrak{c}_{1}, \ldots, \mathfrak{c}_{k} \in C^{\chi}$ satisfying Theorem 3.93 .9 . Fix, furthermore, any ideal class $\mathfrak{c}_{k+1} \in C^{\chi}$. Fix an ideal $\mathcal{C}$ satisfying Theorem 3.8 and Theorem 3.9 (this is possible since the ideals satisfying these Theorems are just annihilators of finite $\Lambda$-modules). Fix $\eta \in \mathcal{C}$ such that $\Lambda_{m} / \eta \Lambda_{m}$ is finite for all $m$. Let $\theta:=\theta_{n, \eta}:{\overline{E_{n}}}^{\chi} \rightarrow \Lambda_{n}$ be the map provided by Theorem 3.8. Without loss of generality, we may normalise $\theta$ so that $\theta\left(\xi^{\chi}\right)=\eta h_{\chi}$.

Now let $h$ be any integer such that $p^{h} \geq\left|\Lambda_{n} / \eta \Lambda_{n}\right|$ and $p^{h} \geq\left|\Lambda_{n} / h_{\chi} \Lambda_{n}\right|$ which is finite by Lemma 3.10 Set $M=p^{n+(k+1) h}\left|C^{\chi}\right|$.

Using Proposition 2.9 we can inductively choose primes $\mathfrak{q}_{1}$ of $F$ lying over primes $q_{i}$ of $\mathbb{Q}$ for $1 \leq i \leq k+1$ such that

$$
\begin{array}{r}
\lambda_{i} \in \mathfrak{c}_{i}, \quad q_{i} \equiv 1 \quad(\bmod M) \\
\overline{v_{\mathfrak{q}_{1}}}\left(\kappa_{n, M}\left(q_{1}\right)\right)=u_{1} \eta h_{\chi}, \quad f_{i-1} \overline{v_{\mathfrak{q}_{i}}}\left(\kappa_{n, M}\left(r_{i}\right)\right)=u_{i} \eta \overline{v_{\mathfrak{q}_{i-1}}}\left(\kappa_{n, M}\left(r_{i-1}\right)\right) \tag{2}
\end{array}
$$

where $r_{i}=\prod_{j \leq i} q_{j}$ and $u_{i} \in(\mathbb{Z} / M \mathbb{Z})^{\times}$.
We only show the basis case: let $\mathfrak{c}=\mathfrak{c}_{1}, W=\left(E / E^{M}\right)^{\chi}$ and

$$
\psi: W \rightarrow\left(\bar{E} / \bar{E}^{M}\right)^{\chi} \xrightarrow{\theta} \Lambda_{n} / M \Lambda_{n} \xrightarrow{\chi}\left(\Lambda_{n} / M \Lambda_{n}\right)^{\chi}
$$

By Proposition 2.9, there exists a prime $\mathfrak{q}_{1}$ of $F$, a prime $q_{i}$ of $\mathbb{Q}$ lying below $\mathfrak{q}_{1}$ and $u_{1} \in(\mathbb{Z} / M \mathbb{Z})^{\times}$ satisfying (1) and such that for all $w \in W,[w]_{q_{1}}=0$ and $\phi_{q_{1}}(w)=u \psi(w) \mathfrak{q}_{1}$. By the Factorisation Theorem and Proposition 2.9. we have

$$
\begin{aligned}
\overline{v_{\mathfrak{q}_{1}}}\left(\kappa_{n, M}\left(q_{1}\right)\right) \mathfrak{q}_{1}^{\chi}=\left[\kappa_{n, M}\left(q_{1}\right)\right]_{q_{1}}^{\chi}=\phi_{q_{1}}\left(\kappa_{n, M}\left(q_{1}\right)\right)^{\chi} & =u_{1} \psi\left(\kappa_{n, M}\left(q_{1}\right)\right) \mathfrak{q}_{1}^{\chi} \\
& =u_{1} \theta\left(\kappa_{n, M}\left(q_{1}\right)\right) \\
& =u_{1} \eta h_{\chi} \mathfrak{q}_{1}^{\chi}
\end{aligned}
$$

Since $I_{q_{1}}^{\chi} / M I_{q_{1}}^{\chi}$ is free of rank one over $\Lambda_{n} / M \Lambda_{n}$ generated by $\mathfrak{q}_{1}^{\chi}$, this proves the basis case.
We now continue this inductive process for $k+1$ steps. Combining all of the relations in (2), we have

$$
\eta^{k+1} h_{\chi}=u f_{\chi} \overline{v_{\mathfrak{q}_{k+1}}}\left(\kappa_{n, M}\left(r_{k+1}\right)\right)
$$

in $\Lambda_{n} / M \Lambda_{n}$ for some unit $u \in(\mathbb{Z} / M \mathbb{Z})^{\times}$. Hence $f_{\chi}$ divides $\eta^{k+1} h_{\chi}$ in $\Lambda_{n} / p^{n} \Lambda_{n}$. Since this holds for all $n$, we have that $f_{\chi}$ divides $\eta^{k+1} h_{\chi}$ in $\Lambda$.

To remove the factor of $\eta^{k+1}$, note that we can always choose $\eta$ and $\eta^{\prime}$ relatively prime so that $f_{\chi}$ divides $\eta^{k+1} h_{\chi}$ and also $\eta^{\prime k+1} h_{\chi}$ (for example, let $\eta=p, \eta^{\prime}=\gamma^{p^{n}}-p$ ). Since $\Lambda$ is a unique factorisation domain, we necessarily have that $f_{\chi} \mid h_{\chi}$.


[^0]:    ${ }^{1}$ so that $m$ is the conductor of $\mathbb{Q}\left(\zeta_{m}\right)$

[^1]:    ${ }^{2} C_{\infty}^{\chi}$ is pseudoisomorphic to a $\Lambda$-module of the form $\oplus_{i=1}^{k} \Lambda /\left(f_{i}\right) \Lambda$ so that $f_{\chi}=\prod_{i=1}^{k} f_{i}$

