The Main Conjecture of Iwasawa Theory over \mathbb{Q}

Alexandre Daoud alex.daoud@cantab.net

June 14, 2019

1 Cyclotomic Units

Definition 1.1. Let $m \neq 2 \pmod{4}^1$ and ζ_m a primitive m^{th} root of unity. We define the group of **cyclotomic units** of $F = \mathbb{Q}(\zeta_m)$ to be the multiplicative group

 $\mathcal{E}_m = \langle \pm \zeta_m, \zeta_m^a - 1 \mid 1 < a < m \rangle \cap \mathcal{O}_F^{\times}$

Moreover, we define the **real cyclotomic units** to be $\mathcal{E}_m^+ = \mathcal{E}_m \cap F^+$.

The following is a consequence of the analytic class number formula:

Theorem 1.2. Let h_m^+ be the class number of $F = \mathbb{Q}(\zeta_m)^+$. Then

$$h_m^+ = [\mathcal{O}_{F^+}^{\times} : \mathcal{E}_m^+] = [\mathcal{O}_F^{\times} : \mathcal{E}_m]$$

$\mathbf{2}$ Euler Systems

For each k > 1, fix a primitive k^{th} root of unity ζ_k such that $\zeta_{kl}^l = \zeta_k$ for all k and l. Fix an odd prime p. Let \mathcal{R} be the collection of square-free products of primes coprime to p. For each $n \ge 1$, let $F_n = \mathbb{Q}(\zeta_{p^n})^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$. For each $r \in \mathcal{R}$, let $F_n^r = F_n(\zeta_r)$. By $q \in \mathcal{R}$ we shall always mean a prime. Visually, we have the following situation for each $r, q \in \mathcal{R}$:

2.1The Universal Euler System

Denote $G_r = \operatorname{Gal}(F_n^r/F_n)$. Then we have a natural isomorphism $G_r = \prod_{q|r} G_q$.

¹so that *m* is the conductor of $\mathbb{Q}(\zeta_m)$

Definition 2.1. We define the **norm operator** of $\mathbb{Z}[G_r]$ to be

$$N_r = \prod_{q|r} N_q = \prod_{q|r} \sum_{\sigma_q \in G_q} \sigma_q$$

Now let σ_q be a generator of G_q . We define the **derivative operator** of $\mathbb{Z}[G_r]$ to be

$$D_r = \prod_{q|r} D_q = \prod_{q|r} \sum_{i=i}^{q-2} i\sigma_q^i$$

Definition 2.2. Given $n \in \mathbb{N}$ and $r \in \mathcal{R}$, let $x_{n,r}$ be a symbol. Let $Y_{n,r}$ be the free $\mathbb{Z}[\operatorname{Gal}(F_n^r/F)]$ -module on the set $\{x_{n,s} : s \mid r\}$. Moreover, let $Z_{n,r}$ be the submodule of $Y_{n,r}$ generated by the relations

- $G_{t/s}$ acts trivially on $x_{n,s}$
- If $qs \mid r$ then $N_q x_{n,qs} = (1 \operatorname{Fr}_q^{-1}) x_{n,s}$

where Fr_q is the arithmetic Frobenius at q in $\operatorname{Gal}(F_n^s/K)$. Finally, we set $X_{n,r}$ to be the factor module $X_{n,r} = Y_{n,r}/Z_{n,r}$.

Definition 2.3. We define the universal Euler system to be the direct limit

$$\mathcal{X} = \varinjlim_{n,r} X_{n,r}$$

taken with respect to the norm operators. An **Euler system** is a G_K -equivariant map

$$\boldsymbol{\eta}: \mathcal{X} \to \bigcup_{n,r} F_n^{r \times}$$

Remark. Specifying an Euler system is equivalent to specifying a collection of global units

$$\{ \boldsymbol{\eta}(n,r) \in F_n^r \mid n > 1, r \in \mathcal{R} \}$$

satisfying the norm-compatibility relations

- 1. $N_{F_n^{qr}/F_n^r} \boldsymbol{\eta}(n,qr) = \boldsymbol{\eta}(n,r)^{1-\operatorname{Fr}_q^{-1}}$
- 2. $N_{F_{n+1}^r/F_n^r} \boldsymbol{\eta}(n+1,r) = \boldsymbol{\eta}(n,r)$

Theorem 2.4. For each $n \ge 1$ and $r \in \mathcal{R}$, write $\tau_{n,r} = \operatorname{Fr}_p^{-n}(\zeta_r)$. Define

$$\boldsymbol{\eta}(n,r) = (\zeta_{p^n} \tau_{n,r} - 1)(\zeta_{p^n}^{-1} \tau_{n,r} - 1)$$

Then each $\eta(n,r)$ is a cylotomic unit and η is an Euler system.

Here we have used $\tau_{n,r}$ to ensure the second norm-compatibility relation. Without it we can still prove the theorems in the next section but it is nice to have in generality.

2.2 Kolyvagin's Derivative Construction

Let M be a power of p and define

 $\mathcal{R}_{n,M} = \{ r \in \mathcal{R} : \forall q \mid r, q \text{ splits completely in } F_n \text{ and } q - 1 \equiv 0 \pmod{M} \}$

Proposition 2.5. Let $r \in \mathcal{R}_{n,M}$. Then $D_r(x_{n,r}) \in (X_{n,r}/MX_{n,r})^{G_r}$.

Proposition 2.6. Let η be an Euler system. Then there exists a $\beta_r \in F_n^{r \times}$ which is unique modulo F_n^{\times} such that

$$\frac{\boldsymbol{\eta}(n,r)^{D_r}}{\beta_r^M} \in F_n^{r \times n}$$

We then define a map

$$\kappa_{n,M} : \mathcal{R}_{n,M} \to F_n^{r^{\times}} / (F_n^{r^{\times}})^M$$
$$r \mapsto \left[\frac{\boldsymbol{\eta}(n,r)^{D_r}}{\beta_r^M}\right]$$

For the rest of this section, fix $n \in \mathbb{N}$ and denote $L = F_n$. Let M_L be the collection of finite primes of L and I_L the group of fractional ideals of L written additively:

$$I_L = \bigoplus_{\mathfrak{q} \in M_L} \mathbb{Z}\mathfrak{q}$$

Given a finite prime q of K, let I_L^q be

$$I_L^q = \bigoplus_{\mathfrak{q}/q} \mathbb{Z}\mathfrak{q}$$

Given $y \in L^{\times}$, let $(y) \in I_L$ be the principal ideal generated by y, and $[y]_q$ the projection of (y) into I_L^q/MI_L^q . **Proposition 2.7.** Let $q \in \mathcal{R}_{n,M}$. Then there exists a $\operatorname{Gal}(L/K)$ -equivariant homomorphism

$$\phi_q: L^{\times}/(L^{\times})^M \to I_L^q/MI_L^q$$

Theorem 2.8. Let η be an Euler system and $q \in \mathcal{R}_{n,M}$. Then

$$[\kappa_{n,M}(r)]_q = \begin{cases} \phi_q(\kappa_{n,M}(r/q)) & \text{if } q \mid r \\ 0 & \text{if } q \nmid r \end{cases}$$

The following proposition gives us a supply of primes in $\mathcal{R}_{n,M}$ to work with. Let p > 2 be prime and C be the *p*-part of the ideal class group of $F = \mathbb{Q}(\zeta_p)^+$.

Proposition 2.9. Let $[c] \in C$ be an ideal class, W a finite G-submodule of $L^{\times}/(L^{\times})^M$ and a G = Gal(L/K)-equivariant homomorphism

$$\psi: W \to (\mathbb{Z}/M\mathbb{Z})[G]$$

Then there are infinitely many primes q of L such that

- 1. $q \in \mathcal{R}_{n,M}$ where q is the rational prime lying under q
- 2. $q \in [c]$
- 3. For all $w \in W$, $[w]_q = 0$ and there exists $u \in \mathbb{Z}/M\mathbb{Z}^{\times}$ such that $\phi_q(w) = u\psi(w)\mathfrak{q}$

3 The Main Conjecture

Fix a rational prime p > 2. Denote $K_{\infty} = \bigcup_{n > 1} K_n$

$$\Delta = \operatorname{Gal}(K_1/\mathbb{Q}) = (\mathbb{Z}/p\mathbb{Z})^{\times}, \quad \Gamma = \operatorname{Gal}(K_{\infty}/K_1) = \mathbb{Z}_p$$

so that $\operatorname{Gal}(K_{\infty}/\mathbb{Q}) = \Delta \times \operatorname{Gal}(K_{\infty}/K_1)$. Let C_n be the *p*-part of the ideal class group of K_n , U_n the group of principal *p*-units of K_n and E_n the group of global units of K_n . Denote

$$\overline{E_n} = \overline{E_n \cap U_n}, \qquad V_n = \overline{\mathcal{E}_n \cap U_n}$$

and

$$C_{\infty} = \varprojlim_{n} C_{n}, \quad E_{\infty} = \varprojlim_{n} \overline{E_{n}}, \quad V_{\infty} = \varprojlim_{n} V_{n}, \quad U_{\infty} = \varprojlim_{n} U_{n}$$

all with respect to norm maps. For $n \leq \infty$, let Ω_n be the maximal abelian *p*-extension of K_n unramified outside of *p*. Denote $X_n = \text{Gal}(\Omega_n/K_n)$. Let

$$\Lambda = \mathbb{Z}_p[[\Gamma]] = \varprojlim_n \mathbb{Z}_p[\operatorname{Gal}(K_n/K_1)]$$

be the Iwasawa algebra. For each character $\chi \in \widehat{\Delta}$ define the χ -idempotent

$$e_{\chi} = \frac{1}{p-1} \sum_{\delta \in \Delta} \chi^{-1}(\delta) \delta$$

Given a $\mathbb{Z}_p[\Delta]$ -module Y, let $Y^{\chi} = e_{\chi}Y$ be its χ -isotypical part.

3.1 A first consequence of Kolyvagin's Theory

Theorem 3.1. For every character χ of Δ and every n, $|C_n^{\chi}|$ divides $|(E_n/\mathcal{E}_n)^{\chi}|$.

Corollary 3.2 (Mazur-Wiles, Kolyvagin). For every character χ of Δ and every n, we have

$$|C_n^{\chi}| = |(E_n / \mathcal{E}_n)^{\chi}|$$

Proof. By Theorem 1.2 (the analytic class number formula), we have that

$$\prod_{\chi} |C_n^{\chi}| = |C_n| = |E_n/\mathcal{E}_n \otimes_{\mathbb{Z}} \mathbb{Z}_p| = \prod_{\chi} |E_n^{\chi}/\mathcal{E}_n^{\chi}|$$

The Corollary then follows by application of the previous Theorem.

3.2 The Main Conjecture

Theorem 3.3. $C^{\chi}_{\infty}, E^{\chi}_{\infty}, V^{\chi}_{\infty}, U^{\chi}_{\infty}, X^{\chi}_{\infty}$ are all finitely-generated Λ -modules. C^{χ}_{∞} is a torsion Λ -module. If χ is an even character then X^{χ}_{∞} and $U^{\chi}_{\infty}/V^{\chi}_{\infty}$ have Λ -torsion too.

Given a finitely generated torsion Λ -module M, there exists a pseudo-isomorphism $M \sim \bigoplus_i \Lambda/f_i\Lambda$. Denote char $(M) = \prod_i f_i\Lambda$. The Main Conjecture of Iwasawa Theory is the following Theorem of Mazur-Wiles.

Theorem 3.4 (Mazur-Wiles, Main Conjecture). For every even character χ of Δ we have

$$(f_{\chi}) = \operatorname{char}(C_{\infty}^{\chi}) = \operatorname{char}((E_{\infty}/V_{\infty})^{\chi}) = (h_{\chi})$$

3.3 The Strategy

Let γ be a topological generator of Γ . For each $n \in \mathbb{N}$, let $\Gamma_n = \Gamma/\Gamma^{p^n} = \operatorname{Gal}(K_n/K_1)$. Recall that we have an isomorphism

$$\mathbb{Z}_p[\Gamma_n] \to \mathbb{Z}_p[T]/((1+T)^{p^n} - 1)$$
$$\gamma \mapsto 1 + T$$

Hence letting $I_n = (\gamma^{p^n} - 1)\Lambda$ we have

$$\Lambda_n := \Lambda / I_n \cong \mathbb{Z}_p[\Gamma_n]$$

If Y is a Λ -module, write

$$Y_{\Gamma_n} = Y/I_n Y = Y \otimes_\Lambda \Lambda_n$$

The strategy will be to show that $(f_{\chi}) = \operatorname{char}(C_{\infty}^{\chi})$ divides $(h_{\chi}) = \operatorname{char}((E_{\infty}/V_{\infty})^{\chi})$. The Main Conjecture will then follow from the following two algebraic lemmas:

Lemma 3.5. Let χ be an even character of Δ . Then

- 1. For all n, $\Lambda_n/f_{\chi}\Lambda_n$ and $\Lambda_n/h_{\chi}\Lambda_n$ are finite.
- 2. There is a positive constant c such that for all n we have

$$c^{-1} \le \frac{|C_n^{\chi}|}{|\Lambda_n/f_{\chi}\Lambda_n|} \le c, \qquad c^{-1} \le \frac{|\overline{E_n}^{\chi}/V_n^{\chi}|}{\Lambda_n/h_{\chi}\Lambda_n} \le c$$

Lemma 3.6. Let $a_n \sim b_n$ mean that a_n/b_n is bounded above and below independently of n. Let $g_1, g_2 \in \Lambda$ such that $g_1 \mid g_2$ and $\mid (\Lambda/g_1\Lambda)_{\Gamma_n} \mid \sim \mid (\Lambda/g_2\Lambda)_{\Gamma_n} \mid$. Then $g_1\Lambda = g_2\Lambda$.

We can now prove the Main Conjecture:

Proof. Denote $f = \prod_{\chi \text{ even}} f_{\chi}$ and $h = \prod_{\chi \text{ even}} h_{\chi}$. Then the first Lemma and the Mazur-Wiles Theorem imply that

$$\begin{split} |(\Lambda/f\Lambda)_{\Gamma_n}| &\sim \prod_{\chi \text{ even}} |(\Lambda/f_{\chi}\Lambda)_{\Gamma_n}| \sim \prod_{\chi \text{ even}} |C_n^{\chi}| = |C_n| = [\overline{E_n}^{\chi} : V_n^{\chi}] = \prod_{\chi \text{ even}} |\overline{E_n}^{\chi} : V_n^{\chi}| \\ &\sim \prod_{\chi \text{ even}} |\Lambda/h_{\chi}\Lambda| \\ &\sim |(\Lambda/h\Lambda)_{\Gamma_n}| \end{split}$$

By hypothesis, $f \mid h$ so the second Lemma implies that $f\Lambda = g\Lambda$. The division assumption then yields the result.

Hence it suffices to show that (f_{χ}) divides (h_{χ}) .

3.4 Some Results from Iwasawa Theory

Theorem 3.7. For every character of Δ , the natural map $(C_{\infty}^{\chi})_{\Gamma_n} \to C_n^{\chi}$ is an isomorphism. If χ is even and non-trivial then the natural maps

$$(X_{\infty}^{\chi})_{\Gamma_n} \to X_n^{\chi}, \qquad (U_{\infty}^{\chi})_{\Gamma_n} \to U_n^{\chi}, \qquad (V_{\infty}^{\chi})_{\Gamma_n} \to V_n^{\chi}$$

are isomorphisms.

Theorem 3.8. Let χ be a non-trivial even character of Δ . Then there is an ideal \mathcal{A} of finite index in Λ such that for all $\eta \in \mathcal{A}$ and n there exists a homomorphism $\phi_{n,\eta} : \overline{E_n}^{\chi} \to \Lambda_n$ such that $\theta_{n,\eta}(V_n^{\chi}) = \eta h_{\chi} \Lambda_n$.

Theorem 3.9. There exists an ideal \mathcal{B} of finite index in Λ and for each n ideal classes $\mathfrak{c}_1, \ldots, \mathfrak{c}_n \in C_n^{\chi}$ such that the annihilator $\operatorname{Ann}(\mathfrak{c}_i)$ of \mathfrak{c}_i in $C_n^{\chi}/(\Lambda \mathfrak{c}_1 \oplus \cdots \oplus \Lambda \mathfrak{c}_{i-1})$ satisfies $\mathcal{B}\operatorname{Ann}(\mathfrak{c}_i) \subseteq f_i\Lambda_n$ where f_i is the i^{th} "summand" of f_{χ}^2 .

Lemma 3.10. Let χ be an even character of Δ . If χ is trivial then f_{χ} and h_{χ} are units in Λ .

3.5 The Proof of the First Division

For this section, we fix n and write $C = C_n$, $E = \overline{E_n}$, $V = V_n$ and $F = K_n^+$. Note that if χ is even then we can identify C^{χ} with the χ -part of the p-part of the ideal class group of F.

Given a power of p, M, a prime $q \in \mathcal{R}_{n,M}$ and $w \in F^{\times}$, we write $(w)_q \in I_q$ to be the portion of (w) supported on primes lying above q and $[w]_q$ for its image in I_q/MI_q . If \mathfrak{q} is a prime of F lying above q then I_q^{χ} is a free Λ_n -module of rank 1, generated by \mathfrak{q}^{χ} . Define a map

$$v_{\mathfrak{q}} = v_{\mathfrak{q},\chi} : F^{\times} \to \Lambda_n$$

by setting $v_{\mathfrak{q}}(w)\mathfrak{q}^{\chi} = (w)_{q}^{\chi}$. Write $\overline{v_{\mathfrak{q}}}$ for the induced map

$$\overline{v_{\mathbf{q}}}: F^{\times}/(F^{\times})^M \to \Lambda_n/M\Lambda_n$$

which satisfies $v_{\mathfrak{q}}(w)\mathfrak{q}^{\chi} = [w]_{\mathfrak{q}}^{\chi}$.

Lemma 3.11. Fix $r \in \mathcal{R}_{n,M}$, a prime $q \mid r$ and a prime \mathfrak{q} of F lying above q. Let B be the subgroup of C generated by the primes of F dividing r/l. Let $\mathfrak{c} \in C^{\chi}$ be the class of \mathfrak{q}^{χ} and W the Λ_n -submodule of $F^{\times}/(F^{\times})^M$ generated by $\kappa_{n,M}(r)^{\chi}$. If

1. $\eta, f \in \Lambda_n$ are such that $\operatorname{Ann}(\mathfrak{c})$ in Λ_n of \mathfrak{c} in C^{χ}/B^{χ} satisfies $\eta \operatorname{Ann}(\mathfrak{c}) \subseteq f \Lambda_n$

- 2. $\Lambda_n/f\Lambda_n$
- 3. $M \ge |C^{\chi}| \cdot \left| \frac{I_q^{\chi}/MI_q^{\chi}}{\Lambda_n[\kappa_{n,M}(r)^{\chi}]_q} \right|$

then there is a Galois-equivariant map $\psi:W\to\Lambda_n/M\Lambda_n$ such that

$$f\psi(\kappa_{n,M}(r)^{\chi}) = \eta \overline{v_{\mathbf{q}}}(\kappa_{n,M}(r))$$

 $^{{}^{2}}C_{\infty}^{\chi}$ is pseudoisomorphic to a Λ -module of the form $\bigoplus_{i=1}^{k} \Lambda/(f_i)\Lambda$ so that $f_{\chi} = \prod_{i=1}^{k} f_i$

Theorem 3.12. Let χ be an even character of Δ . Then $\operatorname{char}(C^{\infty}_{\chi})$ divides $\operatorname{char}(E^{\infty}_{\chi}/V^{\infty}_{\chi})$.

Proof. First suppose that χ is trivial. Then Lemma 3.10 implies that the characteristic ideals are trivial so the Theorem then follows immediately.

Now suppose that χ is not trivial. Observe that $\kappa_{n,M}(1)$ is represented by $\xi = \eta(n, 1) = (\zeta_{p^n} - 1)(\zeta_{p^n}^{-1} - 1)$ and that ξ^{χ} generates V_n^{χ} . Fix ideal classes $\mathfrak{c}_1, \ldots, \mathfrak{c}_k \in C^{\chi}$ satisfying Theorem 3.9 3.9. Fix, furthermore, any ideal class $\mathfrak{c}_{k+1} \in C^{\chi}$. Fix an ideal \mathcal{C} satisfying Theorem 3.8 and Theorem 3.9 (this is possible since the ideals satisfying these Theorems are just annihilators of finite Λ -modules). Fix $\eta \in \mathcal{C}$ such that $\Lambda_m/\eta\Lambda_m$ is finite for all m. Let $\theta := \theta_{n,\eta} : \overline{E_n}^{\chi} \to \Lambda_n$ be the map provided by Theorem 3.8. Without loss of generality, we may normalise θ so that $\theta(\xi^{\chi}) = \eta h_{\chi}$.

Now let h be any integer such that $p^h \ge |\Lambda_n/\eta\Lambda_n|$ and $p^h \ge |\Lambda_n/h_{\chi}\Lambda_n|$ which is finite by Lemma 3.10. Set $M = p^{n+(k+1)h}|C^{\chi}|$.

Using Proposition 2.9 we can inductively choose primes \mathfrak{q}_1 of F lying over primes q_i of \mathbb{Q} for $1 \leq i \leq k+1$ such that

$$\lambda_i \in \mathfrak{c}_i, \quad q_i \equiv 1 \pmod{M} \tag{1}$$

$$\overline{v_{\mathfrak{q}_1}}(\kappa_{n,M}(q_1)) = u_1 \eta h_{\chi}, \quad f_{i-1} \overline{v_{\mathfrak{q}_i}}(\kappa_{n,M}(r_i)) = u_i \eta \overline{v_{\mathfrak{q}_{i-1}}}(\kappa_{n,M}(r_{i-1}))$$
(2)

where $r_i = \prod_{j < i} q_j$ and $u_i \in (\mathbb{Z}/M\mathbb{Z})^{\times}$.

We only show the basis case: let $\mathfrak{c} = \mathfrak{c}_1$, $W = (E/E^M)^{\chi}$ and

$$\psi: W \to (\overline{E}/\overline{E}^M)^{\chi} \xrightarrow{\theta} \Lambda_n / M \Lambda_n \xrightarrow{\chi} (\Lambda_n / M \Lambda_n)^{\chi}$$

By Proposition 2.9, there exists a prime \mathfrak{q}_1 of F, a prime q_i of \mathbb{Q} lying below \mathfrak{q}_1 and $u_1 \in (\mathbb{Z}/M\mathbb{Z})^{\times}$ satisfying (1) and such that for all $w \in W$, $[w]_{q_1} = 0$ and $\phi_{q_1}(w) = u\psi(w)\mathfrak{q}_1$. By the Factorisation Theorem and Proposition 2.9, we have

$$\overline{v_{\mathfrak{q}_1}}(\kappa_{n,M}(q_1))\mathfrak{q}_1^{\chi} = [\kappa_{n,M}(q_1)]_{q_1}^{\chi} = \phi_{q_1}(\kappa_{n,M}(q_1))^{\chi} = u_1\psi(\kappa_{n,M}(q_1))\mathfrak{q}_1^{\chi}$$
$$= u_1\theta(\kappa_{n,M}(q_1))$$
$$= u_1nh_{\chi}\mathfrak{q}_1^{\chi}$$

Since $I_{q_1}^{\chi}/MI_{q_1}^{\chi}$ is free of rank one over $\Lambda_n/M\Lambda_n$ generated by \mathfrak{q}_1^{χ} , this proves the basis case.

We now continue this inductive process for k + 1 steps. Combining all of the relations in (2), we have

$$\eta^{k+1}h_{\chi} = uf_{\chi}\overline{v_{\mathfrak{q}_{k+1}}}(\kappa_{n,M}(r_{k+1}))$$

in $\Lambda_n/M\Lambda_n$ for some unit $u \in (\mathbb{Z}/M\mathbb{Z})^{\times}$. Hence f_{χ} divides $\eta^{k+1}h_{\chi}$ in $\Lambda_n/p^n\Lambda_n$. Since this holds for all n, we have that f_{χ} divides $\eta^{k+1}h_{\chi}$ in Λ . To remove the factor of η^{k+1} , note that we can always choose η and η' relatively prime so that f_{χ} divides

To remove the factor of η^{k+1} , note that we can always choose η and η' relatively prime so that f_{χ} divides $\eta^{k+1}h_{\chi}$ and also ${\eta'}^{k+1}h_{\chi}$ (for example, let $\eta = p$, $\eta' = \gamma^{p^n} - p$). Since Λ is a unique factorisation domain, we necessarily have that $f_{\chi} \mid h_{\chi}$.