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1 Cyclotomic Units

Definition 1.1. Let m # 2 (mod 4) and (,, a primitive m!” root of unity. We define the group of
cyclotomic units of F' = Q((,,) to be the multiplicative group

Em = (£l C — 1|1 <a<m)nNOf
Moreover, we define the real cyclotomic units to be £ =&, N F+.

The following is a consequence of the analytic class number formula:

Theorem 1.2. Let b}t be the class number of F = Q((m)T. Then

iy =[0ps : &3] = [OF: + &

2 Euler Systems
For each k > 1, fix a primitive &' root of unity () such that ¢}, = ¢ for all k and .
Fix an odd prime p. Let R be the collection of square-free products of primes coprime to p. For each

n>1,let F, = Q({m)t = Q(¢ + ¢, ). For each r € R, let ), = F,,(¢,). By ¢ € R we shall always mean
a prime. Visually, we have the following situation for each r,q € R:
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2.1 The Universal Euler System
Denote G = Gal(Fy;/Fy,). Then we have a natural isomorphism G, =[], Gq.

Iso that m is the conductor of Q(¢m)



Definition 2.1. We define the norm operator of Z|[G,] to be
N'r — HNq = H Z Oq
qlr qlr 04€Gyq

Now let o4 be a generator of G,. We define the derivative operator of Z[G,| to be

q—2
D.=[[D,=]]> il

alr alr i=i

Definition 2.2. Given n € N and r € R, let x,,, be a symbol. Let Y,, , be the free Z[Gal(F, /F)]-module
on the set {z, s : s | r}. Moreover, let Z, , be the submodule of Y,, , generated by the relations

e G/, acts trivially on z,, s
o If gs | v then Nyzp 45 = (1 — Fr;l):rms

where Fr, is the arithmetic Frobenius at ¢ in Gal(F;/K). Finally, we set X, , to be the factor module
Xn,'r = ’I’L,’I”/ZTL,T‘

Definition 2.3. We define the universal Euler system to be the direct limit

X = hﬂ X’n,r

n,r
taken with respect to the norm operators. An Euler system is a Gx-equivariant map
n:X =B~
o
Remark. Specifiying an Euler system is equivalent to specifying a collection of global units
{nn,r)eF |n>1reR}

satisfying the norm-compatibility relations

L. Npgrp (0, qr) = n(n,r)' ="
2. NF,:H/F:; n(n+1,7)=n(n,r)

Theorem 2.4. For eachn > 1 and r € R, write 7, = Fr,"((;). Define

n(n, ) = ((pnTnr — 1)((;7_77/17'n,r - 1)
Then each n(n,r) is a cylotomic unit and 1 is an Euler system.

Here we have used 7, , to ensure the second norm-compatibility relation. Without it we can still prove
the theorems in the next section but it is nice to have in generality.

2.2 Kolyvagin’s Derivative Construction
Let M be a power of p and define
Rom ={re€R:Vq]|r, qsplits completely in F,, and ¢ —1=0 (mod M)}

Proposition 2.5. Let r € Ry ar. Then Dy (zy,,) € (Xn’T/MXn_,T)G",

Proposition 2.6. Let i be an Euler system. Then there exists a 3, € F.* which is unique modulo FX
such that

n(T;L)DT e

We then define a map

Rn,M - Rn,M — F;;X/(F;X)]w

n(n,r)Dr}

ro |1



For the rest of this section, fix n € N and denote L = F},. Let M, be the collection of finite primes of L
and I, the group of fractional ideals of L written additively:

IL= P zq

qeMy,
Given a finite prime ¢ of K, let I be
I =Pzq
qa/q
Giveny € L*, let (y) € Iy, be the principal ideal generated by y, and [y], the projection of (y) into I /MI}.
Proposition 2.7. Let ¢ € Ry, p. Then there exists a Gal(L/K)-equivariant homomorphism
¢q + L*)(L)M — I} /M I}
Theorem 2.8. Let i) be an Fuler system and q¢ € Ry . Then

enan(r)ly = { el /) e

The following proposition gives us a supply of primes in R, s to work with. Let p > 2 be prime and C
be the p-part of the ideal class group of F = Q((,)*.

Proposition 2.9. Let [¢c] € C be an ideal class, W a finite G-submodule of L* /(L*)M and a G = Gal(L/K)-
equivariant homomorphism

bW (Z/MZ)[G]
Then there are infinitely many primes q of L such that

1. g € Ry, m where q is the rational prime lying under g

2. g€l

3. For allw € W, [w], =0 and there exists u € Z/MZ* such that ¢q4(w) = up(w)q

3 The Main Conjecture

Fix a rational prime p > 2. Denote K, = Un21 K,
A = Gal(K,/Q) = (Z/pZ)*, T = Gal(Kw/K1)=1Z,

so that Gal(K»/Q) = A x Gal(K /K1). Let C, be the p-part of the ideal class group of K,,, U,, the group
of principal p-units of K,, and F,, the group of global units of K,,. Denote

E:EnmUn; Vn:gnmUn
and

Cw =limC,, F. =limE,, Vw:r%lvn, UOO:miUn

all with respect to norm maps. For n < oo, let €2,, be the maximal abelian p-extension of K, unramified
outside of p. Denote X,, = Gal(Q2,/K,,). Let

A = 2,[[[]) = Im Z,[Gal(K, /K1)

be the Iwasawa algebra. For each character x € A define the x-idempotent
1 _
&=.7 Z x~1(0)0
p sen

Given a Z,[A]-module Y, let YX = e, Y be its x-isotypical part.



3.1 A first consequence of Kolyvagin’s Theory
Theorem 3.1. For every character x of A and every n, |CX| divides |(E,/En)X|.

Corollary 3.2 (Mazur-Wiles, Kolyvagin). For every character x of A and every n, we have
1CX] = [(En/&n)*]

Proof. By Theorem (the analytic class number formula), we have that

H |Cx| = |Cnl| = |En/En @z Zp| = H |EX/EX]
X X
The Corollary then follows by application of the previous Theorem. O

3.2 The Main Conjecture
Theorem 3.3. CX,EX VX UX, 6 XX are all finitely-generated A-modules. CX, is a torsion A-module. If x

[o oB) oo

is an even character then XX and UX /VX have A-torsion too.

Given a finitely generated torsion A-module M, there exists a pseudo-isomorphism M ~ @, A/fiA.
Denote char(M) = []; fiA. The Main Conjecture of Iwasawa Theory is the following Theorem of Mazur-
Wiles.

Theorem 3.4 (Mazur-Wiles, Main Conjecture). For every even character x of A we have
(fy) = char(CX) = char((Es/Vso)X) = (hy)

3.3 The Strategy

Let v be a topological generator of T'. For each n € N, let T',, = I'/T?" = Gal(K,,/K;). Recall that we
have an isomorphism

Zy[Tn] = Zp[T]/ (1 +T)P" — 1)
y—=1+T

Hence letting I,, = (47" — 1)A we have
A, :=A/I, 2 Z,[T,)
If Y is a A-module, write
Yo, = Y/L,Y =Y @5 A,

The strategy will be to show that (f,) = char(CX)) divides (hy) = char((Ex/Vs)X). The Main Conjec-
ture will then follow from the following two algebraic lemmas:

Lemma 3.5. Let x be an even character of A. Then
1. For alln, A,/ f\ An and Ay /hy A, are finite.

2. There is a positive constant ¢ such that for all n we have

o dex B,
T AR/ Al T T An/hy Ay T

Lemma 3.6. Let a,, ~ b, mean that a, /b, is bounded above and below independently of n. Let gi,g2 € A
such that g1 | g2 and |(A/g1M)r, | ~ [(A/g2M)r, |. Then g1A = g2A.

We can now prove the Main Conjecture:



Proof. Denote f = Hx oven Jx and h = Hx oven - Then the first Lemma and the Mazur-Wiles Theorem
imply that

(A0~ TT 1@/ A~ TT 1Cx =16 = B vl = [ 1B v

X even X even X even

~ I 1a/mal

X even

~[(A/hA)r,

By hypothesis, f | h so the second Lemma implies that fA = gA. The division assumption then yields the
result. O

Hence it suffices to show that (f,) divides (h,).

3.4 Some Results from Iwasawa Theory

Theorem 3.7. For every character of A, the natural map (CX)r, — CX is an isomorphism. If x is even
and non-trivial then the natural maps

X, =X, U, = Uy, (V3r, =V
are isomorphisms.

Theorem 3.8. Let x be a non-trivial even character of A. Then there is an ideal A of finite index in A
such that for alln € A and n there exists a homomorphism ¢y, , : E,~ — A, such that O (VX)) = nhy Ay

Theorem 3.9. There exists an ideal B of finite index in A and for each n ideal classes c1,. .., ¢, € CX such
that the annihilator Ann(c;) of ¢; in CX/(Acy @ --- @ Ac;_1) satisfies BAnn(c;) C fiA,, where f; is the ith
“summand” of fxE|

Lemma 3.10. Let x be an even character of A. If x is trivial then fy and h, are units in A.

3.5 The Proof of the First Division

For this section, we fix n and write C = C,,, E = E,,,V =V, and F = K;I. Note that if x is even then
we can identify CX with the x-part of the p-part of the ideal class group of F.

Given a power of p, M, a prime ¢ € R,, ps and w € F*, we write (w), € I, to be the portion of (w)
supported on primes lying above ¢ and [w], for its image in I,/MI,. If q is a prime of F' lying above ¢ then
IX is a free A,-module of rank 1, generated by gX. Define a map

Vg =gy FX = A,
by setting vq(w)gX = (w)X. Write 7y for the induced map
Tg : FX)(F)M — A, /MA,
which satisfies vq(w)gX = [w]X.

Lemma 3.11. Fiz r € R, m, a prime g | v and a prime q of F lying above q. Let B be the subgroup of
C generated by the primes of F dividing r/l. Let ¢ € CX be the class of X and W the A, -submodule of
FX/(F)M generated by kp a(r)X. If

1. n, f € A, are such that Ann(c) in A, of ¢ in CX/BX satisfies nAnn(c) C fA,
2. N/ fA,

I;‘/]VII;‘
Anltn, v (r)X]q

3. M>|Cx|-
then there is a Galois-equivariant map ¥ : W — A, /MA,, such that

Jo(Rn i (r)*) = nog(rn, (1))

2C% is pseudoisomorphic to a A-module of the form &% _; A/(f;)A so that fy = Hle fi




Theorem 3.12. Let x be an even character of A. Then char(CX)) divides char(EX /VX).

Proof. First suppose that x is trivial. Then Lemma [3.10|implies that the characteristic ideals are trivial so
the Theorem then follows immediately.

Now suppose that x is not trivial. Observe that x,, ar(1) is represented by £ = n(n,1) = ({pn —1)({];”1 -1)
and that £X generates V,X. Fix ideal classes ¢;,...,¢; € CX satisfying Theorem 3.9 @ Fix, furthermore,
any ideal class ¢x11 € CX. Fix an ideal C satisfying Theorem and Theorem (this is possible since the
ideals satisfying these Theorems are just annihilators of finite A-modules). Fix n € C such that A,,/nA,, is
finite for all m. Let 0 := 0, ,, : E,~ = A, be the map provided by Theorem Without loss of generality,
we may normalise 6 so that 6(£X) = nh,,.

Now let h be any integer such that p" > [A,,/nA,| and p* > |A,,/h,A,| which is finite by Lemma
Set M = pn+(k+1)h|cx|'

Using Proposition 2.9 we can inductively choose primes q; of F' lying over primes ¢; of Q for 1 < i < k+1
such that

Xi€¢, ¢=1 (mod M) (1)
Vg, (Fn,m(q1)) = winhy,  fim10g; (Kn,n(ri)) = wimVg,_, (Kn,m (1i-1)) (2)

where r; = [[,; ¢ and u; € (Z/MZ)*.
We only show the basis case: let ¢ = ¢y, W = (E/EM)X and

bW = (B/E"Y S Ay /MA, 2 (An/MA,)X

By Proposition there exists a prime q; of F, a prime ¢; of Q lying below ¢q; and w; € (Z/MZ)*
satisfying (1) and such that for all w € W, [w],, = 0 and ¢4, (w) = u)(w)q;. By the Factorisation Theorem
and Proposition we have

Ty (K, (@1))A7 = [Fn,m (@1)]5, = G (80,00 (q1))* = w1t (kn,a(q1))ay
= ule(ﬁn,M(%))
= Ul77h><qi<

Since I /M1 is free of rank one over A, /MA,, generated by gy, this proves the basis case.
We now continue this inductive process for k 4 1 steps. Combining all of the relations in (2), we have

ﬂthx = ufxvqk+1 (n”,M(T/H-l))

in A, /MA,, for some unit u € (Z/MZ)*. Hence f, divides n**1h, in A, /p™A,. Since this holds for all n,
we have that f, divides n*+1h, in A.

To remove the factor of n*+1, note that we can always choose 1 and 7’ relatively prime so that fy divides
n**+1h, and also n’thX (for example, let n = p, n’ = 4?" — p). Since A is a unique factorisation domain,
we necessarily have that f, | hy. O
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