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1 Preliminaries

1.1 Note on (Local) Smallness

Throughout this document, we shall assume the Axiom of Universes. That is to say,
every set is contained in some large enough Grothendieck universe U . Hence issues of
(local) smallness will not be a concern. Indeed the Axiom of Universes ensures that any
category C which is not (locally) small in the regular sense can be made (locally) U -small
by fixing a large enough Grothendieck universe U .

1.2 Note on Mitchell’s Embedding Theorem

Let A be a small abelian category. By Mitchell’s Embedding Theorem, there exists a
ring with unity R such that A is a full subcategory of ModR. We will freely make use of this
fact to simplify diagram chasing arguments about abelian categories in the following way.
Suppose we are given a diagram D : J → A in A of shape J . Let A′ be the full subcategory
of A that is stable under biproducts and (co)kernels and that contains the image of D. Then
A′ is a small abelian category and we can find a ring R such that A′ is a full subcategory
of ModR. We may then proceed to perform element-wise diagram chases on D in ModR and
then pullback the results into A′ ↪→ A.

1.3 Filtered Colimits

Definition 1.3.1. Let J be a category. We say that J is filtered if the following hold:

1. J is non-empty.

2. Given objects j, j′ ∈ ob J , there exists an object k ∈ ob J and morphisms f : j → k,
f ′ : j′ → k.

3. Given a parallel pair u, v : i→ j in J , there exists an object k ∈ ob J and a morphism
w : j → k such that wu = wv.

Definition 1.3.2. Let J be a filtered category and C a category. Given a diagram F : J → C
of shape J , we define its filtered colimit to be its colimit in C, provided it exists.

Theorem 1.3.3. Let T be an algebraic theory and AlgT the category of models of T in Set1.
Then AlgT is complete and cocomplete and the forgetful functor U : AlgT → Set creates all
limits and colimits. In particular, AlgT has all filtered colimits which are inherited from Set.

Proof. Probaly found somwhere in [Bor94].

Proposition 1.3.4. Let F : J → Set be a diagram of shape J where J is a filtered category.
Then

lim−−−→
j∈J

Fj =
∐
j∈J

Fj/ ∼

where ∼ is the equivalence relation defined as follows: given x ∈ Fj, x′ ∈ Fj′ then x ∼ x′

if and only if there exists an object j′′ ∈ ob J and morphisms (j
f−→ j′′), (j′

g−→ j′′) ∈ mor J
such that Ff(x) = Fg(x).

Proof. See [Bor94, Proposition 2.13.3].
1For example, Grp,AbGrp,Ring,ModR...
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2 Triangulated Categories

2.1 Definition

Definition 2.1.1. Let C be an additive category. We say that C is triangulated if there
exists the following data:

1. An additive automorphism T : C → C called a shift functor. We will often write
A[n] := T n(A) for all n ∈ Z and A ∈ ob C.

2. A collection of diagrams

A B C TA
φ ψ ρ

called triangles which we will often write as sextuples (A,B,C, φ, ψ, ρ) and display
as ‘diagrams’

C

A B

ρ

φ

ψ

We define a morphism of triangles to be a commutative diagram

A B C TA

A′ B C TA′

φ

f

ψ

g

ρ

h Tf

φ′ ψ′ ρ′

which we will often abbreviate as a triple (f, g, h).

subject to the following axioms:

TR1 Every sextuple (A,B,C, φ, ψ, ρ) which is isomorphic to a triangle is itself a triangle.
Any morphism A

φ−→ B in C can be embedded in a triangle (A,B,C, φ, ψ, ρ). The
sextuple (A,A, 0, idA, 0, 0) is a triangle.

TR2 (A,B,C, φ, ψ, ρ) is a triangle if and only if (B,C, TA, ψ, ρ,−Tφ) is a triangle.

TR3 Given triangles (A,B,C, φ, ψ, ρ), (A′, B′, C ′, φ′, ψ′, ρ′) and morphisms A f−→ A′, B g−→ B′

such that g ◦ φ = φ′ ◦ f , there exists a morphism C
h−→ C ′ such that (f, g, h) is a

morphism of triangles.

TR4 (Octahedral axiom) Suppose we are given three triangles (L,M,P, α, γ, σ), (M,N,R, β, ε, τ)
and (L,N,Q, β ◦ α, δ, π). Then there exists a triangle (P,Q,R, φ, ψ, ρ) making the di-
agram
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L M P TL

L N Q TL

M N R TM

P Q R TP

α

idL

γ

β

σ

φ idL

α idN ψ Tα

γ δ idR Tγ

φ ψ ρ

commute.

Remark. The octahedral doesn’t play a part throughout this document. It’s inclusion
in the axioms of a triangulated category is necessary for the theory of t-structures. We
call a category C pre-triangulated if it satisfies only axioms TR1 through TR3. For
completeness, however, we include the octahedral axiom in the definition but we will not
prove that the triangulated categories of interest satisfy it.

Definition 2.1.2. Let F : C → C be an additive functor of triangulated categories. We say
that F is a (covariant) δ-functor if it commutes with the shift functors and sends triangles
to triangles. Dually, a contravariant δ-functor is one that maps triangles to triangles with
arrows reversed and the shift functor to its inverse.

Definition 2.1.3. Let C be triangulated and A abelian. We say that a functor H : C → A
is a (covariant) cohomological functor if given a triangle (A,B,C, φ, ψ, ρ) we have a
long exact sequence

· · · H(T iA) H(T iB) H(T iC)

H(T i+1A) H(T i+1B) H(T i+1C) · · ·

We will often just write H i(A) := H(T iA). Dually, we define a contravariant cohomological
functor similarly with the arrows reversed.

2.2 Basic Properties

Proposition 2.2.1. Let C be a triangulated category.

1. The composition of any two consecutive morphisms in a triangle in C is the zero map.

2. If M ∈ ob C then C(M,−) and C(−,M) are cohomological functors.

3. In the situation of the axiom TR3, if f and g are isomorphisms then so is h.

Proof. Fix a triangle ∆ = (A,B,C, φ, ψ, ρ) in C.
Part 1: By TR2, ∆′ = (B,C, TA, ψ, ρ,−Tφ) is also a triangle. It thus suffices to show that
ψ ◦ φ = 0. By TR1, ∆′′ = (C,C, 0, idC , 0, 0) is a triangle. We can now apply TR3 to the
triangles ∆′ and ∆′′ with the morphisms φ and idC to produce a morphism h : TA → 0
giving a morphism of triangles (φ, idC , h) : ∆′ → ∆′′. It then follows that (Tψ)◦ (−Tφ) = 0.
But T is an automorphism and so ψ ◦ φ = 0.

Part 2: Fix M ∈ ob C. By TR2, it suffices to show that the sequence

C(M,A) C(M,B) C(M,C)
φ∗ ψ∗
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is exact. By Part 1, this composition is the zero map so fix a morphism g ∈ C such that
φ∗(g) = 0. Define ∆′′ = (M,M, 0, idM , 0, 0). Applying TR3 to the triangles ∆′′ and ∆ yields
a morphism of triangles (f, g, h) : ∆′′ → ∆. In particular, the morphism h is such that
g = φ ◦ h = φ∗(h) and so the sequence is exact at C(M,B).

A similar proof shows that C(−,M) is a contravariant cohomological functor.

Part 3: Define ∆′ = (A′, B′, C ′, φ′, ψ′, ρ′) and suppose that we have a morphism of triangles
(f, g, h) : ∆→ ∆′ such that f and g are isomorphisms. Applying the cohomological functor
C(C ′,−), we obtain an exact commuative diagram of abelian groups

C(C ′, A) C(C ′, B) C(C ′, C) C(C ′, TA) C(C ′, TB)

C(C ′, A′) C(C ′, B′) C(C ′, C ′) C(C ′, TA′) C(C ′, TB′)

φ∗

f∗

ψ∗

g∗

ρ∗

h∗ (Tf)∗

(Tφ)∗

(Tg)∗

φ′∗ ψ′∗ ρ′∗ (Tφ′)∗

Since f and g are isomorphisms in C, it follows that f ∗, g∗, (Tf)∗ and (Tg)∗ are isomorphisms
in AbGrp. Appealing to the Five Lemma then implies that h∗ is also an isomorphism. This
implies that there exists y ∈ C(C ′, C) such that h ◦ y = idC′ . An analogous argument with
C(−, C ′) produces a left-inverse to h so that h is necessarily an isomorphism.

3 Localisation

3.1 Definition

Definition 3.1.1. Let C be a category and S ⊆ mor C a collection of morphisms. We say
that S is a multiplicative system if the following axioms hold:

MS1 Given f, g ∈ S such that f ◦ g exists then f ◦ g ∈ S. For all A ∈ ob C, idA ∈ S.

MS2 Any diagram

Z

X Y

s

u

with s ∈ S admits a (not necessarily universal) pullback cone

W Z

X Y

v

t s

u

such that t ∈ S. The dual axiom should also hold.

MS3 Given a parallel pair f, g : X ⇒ Y in C, the following conditions are equivalent:

i) There exists s : Y → Y ′ in S such that s ◦ f = s ◦ g
ii) There exists t : X ′ → X in S such that f ◦ t = g ◦ t

Definition 3.1.2. Let C be a category and S ⊆ mor C a collection of morphisms. The
localisation of C with respect to S is a category S−1C (should it exist) equipped with
a functor Q : C → S−1C such that
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1. For all s ∈ S, Q(s) is an isomorphism.

2. Q is universal amongst functors F : C → D such that F (s) is an isomorphism for all
s ∈ S.

3.2 The Existence of the Localisation

Lemma 3.2.1. Let C be a category and S a multiplicative system. Let SX be the full
subcategory of the slice category C/X whose objects are morphisms in S. Then SX is a
cofiltered category.

Proof. SX is clearly non-empty considering it contains the identity morphism 1X . Now
suppose that we are given objects (X1

s1−→ X), (X2
s2−→ X) ∈ obSX . By MS2, we have a

commutative diagram

X3 X1

X2 X

f

s3 s1

s2

for some morphism s3 ∈ S. By MS1, s2 ◦ s3 ∈ S and so (X3
s2◦s3−−−→ X) ∈ obSX . Moreover,

this commutative diagram provides us with a morphism f : (s3 : X3 → X)→ (s1 : X1 → X)
in the form of the commutative diagram

X3 X1

X

f

s2◦s3 s1

We also trivially have a morphism (s3 : X3 → X)→ (s3 : X2 → X) given by the commuta-
tive diagram

X3 X2

X

s3

s2◦s3 s2

so that the second axiom of a cofiltered category is satisfied.
Finally, suppose that we are given a parallel pair f, g : (s1 : X1 → X)→ (s2 : X2 → X)

in SX . Then, clearly, s2 ◦ f = s2 ◦ g. Then by MS2, there exists an object t : X3 → X in
SX such that f ◦ t = g ◦ t. This is precisely the third axiom of a cofiltered category.

Theorem 3.2.2. Let C be a category and S a multiplicative system of morphisms in C. Then
the localisation exists and is given explicitly by S−1 ob C = ob C and for all X, Y ∈ obS−1C,

S−1C(X, Y ) = lim−−−→
X′∈Sop

X

C(X ′, Y )

where SX is the full subcategory of the slice category C/X whose objects are morphisms in
S. Moreover, if C is additive then so is S−1C

Proof. First suppose that C is additive. Then Theorem 1.3.3 and Proposition 1.3.4 imply
that S−1C is itself enriched over AbGrp.

Proposition 1.3.4 allows us to explicitly describe morphisms in S−1C. Indeed, a morphism
X → Y in S−1C is an equivalence class in

∐
X′∈Sop

X
C(X ′, Y )/ ∼ that is represented by a roof

6



X ′

X Y

s f

for some s ∈ S which we denote as s−1f . Proposition 9.1.2 ensures that composition of
morphisms in S−1C is well-defined.

The localisation functor Q : C → S−1C is the natural one taking a morphism f : X → Y
to the roof 1−1

X f . Now fix a morphism s : X → Y in S. It is clear that Qs is an isomorphism
with inverse given by the roof s−1idX .

Finally, we must show that Q is universal amongst functors mapping S to isomorphisms.
To this end, fix a functor T : C → D and a morphism s ∈ S such that Ts is an isomorphism.
We need to exhibit a unique functor G : S−1C → D such that T = G ◦ Q. First suppose
that such a G exists. Fix a morphism φ ∈ morS−1C represented by a roof s−1f . Then,
in S−1C, we have that φ ◦ id−1s = id−1f so that φ ◦ Qs = Qf . Applying G and using the
equality T = G ◦ Q we have that Gφ ◦ Ts = Tf . Since Ts is invertible, it follows that
Gφ = Tf ◦ (Ts)−1. Hence T uniquely determines G. We can then use this formula for G on
morphisms and equal to TX on objects to obtain a candidate functor G.

Clearly, G(idX) = idTX . Now suppose we are given two morphisms φ, ψ ∈ morS−1C
represented by roofs s−1f and t−1g respectively. Then ψ ◦ φ is represented by a roof (s ◦
u)−1(g ◦ v) where u ∈ S and v are morphisms such that tv = fu. This implies that
Tt ◦ Tv = Tf ◦ Tu so that Tv ◦ (Tu)−1 = (Tt)−1) ◦ Tf . Then

G(ψ ◦ φ) = T (g ◦ v) ◦ (T (s ◦ u))−1 = Tg ◦ Tv ◦ (Tu)−1 ◦ (Ts)−1

= Tg ◦ (Tt)−1 ◦ Tf ◦ (Ts)−1

= Gψ ◦Gφ

We must now show that G is independent of the choice of representative of the morphism
φ : X → Y ∈ morS−1C. Suppose that φ is represented by two roofs s−1f : X

s−1

−−→ X1
f−→ Y

and t−1g : X
t−1

−−→ X2
g−→ Y . Then there exist an object Z and morphisms x : Z → X in

S, y : Z → X1 and z : Z → X2 such that the diagram

X2

X Z Y

X1

t g

x

y

z
s f

commutes. Then Tf ◦Tz = Tg ◦Ty and Ts◦Tz = Tt◦Ty. Observe that since sz = x ∈ S,
Ts ◦ Tz = T (s ◦ z) is invertible. But s ∈ S as well so that Ts is invertible whence so is Tz.
Similarly, Ty is an isomorphism. Hence (Tz)−1 ◦ (Ts)−1 = (Ty)−1 ◦ (Tt)−1. Then

Tf ◦ (Ts)−1 = Tf ◦ Tz ◦ (Tz)−1 ◦ (Ts)−1 = Tf ◦ Tz ◦ (Ty)−1 ◦ (Tt)−1

= Tg ◦ Ty ◦ (Ty)−1 ◦ (Tt)−1

= Tg ◦ (Tt)−1

so that Gφ is independent of the choice of representative roof of φ.
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Remark. We could have dually shown that the coslice category Y S is filtered and defined
morphisms in S−1C as

S−1C(X, Y ) = lim−−−→
Y ′∈Y S

C(X, Y ′)

This is precisely the purpose of the presence of the dual statements in axioms MS2 and
MS3.

3.3 Examples and Properties of the Localisation

Example 3.3.1. Let R be a commutative ring with unity and S a multiplicative set in R.
We can view R as a category with one object whose morphisms are the elements of R and
composition given by the multiplication. Then the categorical localisation S−1R coincides
with the well-known ring-theoretic localisation.

Proposition 3.3.2. Let C be a category and S a multiplicative system in C. Given a full
subcategory D of C, suppose that S ′ = S ∩

⋃
X,Y D(X, Y ) is a multiplicative system for D.

Assume that one of the following conditions holds:

1. If x : Z → X is a morphism in S such that X ∈ obD then there is a morphism
u : Z ′ → Z with Z ′ ∈ obD and such that xu ∈ S ′.

2. The dual of (1).

Then the natural functor F : S ′−1D → S−1C is fully faithful.

Proof. We first show that F is faithful. To this end, suppose that s−1
1 f1 : X → X1 → Y and

f−1
2 f2 : X → X2 → Y are two roofs in S ′−1D and assume that their image under F coincides.
Then in C we have an object Z together with morphisms x : Z → X in S, y : Z → X1 and
z : Z → X2 such that the diagram

X1

X Z Y

X2

s1 f1

x

y

z
s2 f2

commutes. By hypothesis, there exists an object Z ′ ∈ D together with a morphism u : Z ′ →
Z such that xu ∈ S. Since D is a full subcategory of C it follows that x, y and z are all
morphisms in D. Moreover, xu ∈ S ′. We then have a commutative diagram

X1

X Z ′ Y

X2

s1 f1

xu

yu

zu
s2 f2

in D. But this is exactly what it means for the two roofs s−1
1 f1 and s−1

2 f2 to be equivalent.
Hence F is faithful.

The fact that F is full is an immediate consequence of the fact that D is itself a full
subcategory of C.
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Proposition 3.3.3. Let C be a category, S a multiplicative system for C and Q : C → S−1C
the localisation functor. Given another category D let F,G : S−1C → D be functors. Then
there exists a bijection

Φ : [S−1C,D](F,G)→ [C,D](F ◦Q,G ◦Q)

between natural transformations from F to G and natural transformations from F ◦ Q to
G ◦Q.

Proof. We define Φ to be the natural mapping

Φ : [S−1C,D](F,G)→ [C,D](F ◦Q,G ◦Q)

α 7→ αQ

This map is clearly injective since obS−1C = ob C. To see that α is surjective, fix a natural
transformation β : FQ→ GQ. Then for all X ∈ obS−1, we have a morphism βX : FQX →
GQX in D such that for every morphism f : X → Y in C there exists a commutative
diagram

FQX FQY

GQX GQY

FQ(f)

βX βY

GQ(f)

in D. Define a candidate natural transformation α : F → G by αX = βX for all X ∈ ob C. It
is then obvious that Φ(α) = β but we need to verify that α is itself a natural transformation.
To this end, let φ : X → Y be a morphism in S−1C represented by a roof s−1f : X → X ′ →
Y . We need to verify that the following diagram is commutative:

FX FY

GX GY

F (φ)

αX αY

G(φ)

This is equivalent to the commuativity of the diagram

FQX FQX ′ FQY

GQX GQX ′ GQY

(FQs)−1

βX

FQ(f)

βX′ βY

(GQs)−1 GQ(f)

The commutativity of the left hand square is a consequence of the invertibilty of FQs to-
gether with the definition of β. The right hand square’s commutativity is also a consequence
of the definition of β.

Proposition 3.3.4. Let C be an additive category, S a multiplicative system and u : X → Y
a morphism in C. Then the following are equivalent:

1. Qu = 0

2. There exists s : Z → X in S such that us = 0

3. There exists t : Y → Z ′ in S such that tu = 0

9



Proof. The equivalence of (2) and (3) follows immediately from MS3. Fix s : Z → X in
S such that us = 0. Then (Qu) ◦ (Qs) = 0. But Qs is an isomorphism whence Qu = 0.
Hence (2) implies (1). Now assume that Qu = 0. Qu admits a representation by the roof
id−1
X u whence we have an equivalence of roofs id−1

X u = id−1
X 0. Hence there exists a morphism

s : Z → X in S such that we have a commutative diagram

X

X Z Y

X

idX u

s

s

s
idX 0

In particular, s ∈ S is such that us = 0s = 0 which is exactly (2).

Corollary 3.3.5. Let C be an additive category and S a multiplicative system in C. Suppose
we are given a commutative diagram

X Y

X ′ Y ′

Qu

α β

Qu′

in S−1C. Then there exists a roof s−1a : X → R→ X ′ representing α and a roof t−1b : Y →
S → Y ′ representing β, together with a morphism m : R→ S in C such that the diagram

X Y

R S

X ′ Y ′

u

s

a

m

t

b

u′

commutes.

Proof. Fix a representative roof t−1b : Y → S → Y ′ of β and a representative roof s′−1a′−1 :
X → R′ → X ′ of α. Then

α = Q(a′) ◦Q(s′)−1

β = Q(b) ◦Q(t′)−1

By hypothesis, we then have that

Q(b) ◦Q(t)−1 ◦Q(u) = Q(u′) ◦Q(a′) ◦Q(s′)−1

By MS2, there exist morphisms r : R′′ → R′ in S and n : R′′ → S such that the diagram

R′′ S

R′ Y

n

r t

us′

commutes from which we establish the diagram
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X Y

R′′ S

X ′ Y ′

u

s′r

a′r

n

t

b

u′

in which the upper square commutes. To establish the "commutativity" of the lower square
observe that the hypothesis together with the commutativity of the upper square imply that

Q(u′a′r − bn) = Q(u′) ◦Q(a′) ◦Q(r)−Q(b) ◦Q(n)

= Q(b) ◦Q(t)−1 ◦Q(u) ◦Q(s′) ◦Q(r)−Q(b) ◦Q(n)

= Q(b) ◦Q(t)−1 ◦Q(u) ◦Q(s′r)−Q(b) ◦Q(n)

= Q(b) ◦Q(t)−1 ◦Q(t) ◦Q(n)−Q(b) ◦Q(n)

= 0

Hence there exists r′ : R→ R′′ in S such that u′a′rr′ = bnr′. Setting s = s′rr′ ∈ S, a = a′rr′

and m = nr′ yields the Corollary.

Corollary 3.3.6. Let C be an additive category and S a multiplicative system in C. If
u : X → Y is a monomorphism (resp. epimorphism) then Qu is a monomorphism (resp.
epimorphism).

Proof. Fix α : Z → X in S−1C such that Q(u) ◦ α = 0. Suppose that α is represented by a
roof s−1f : X → X ′ → Y . Then

0 = Q(u) ◦ α = Q(u) ◦Q(f) ◦Q(s)−1 = Q(uf) ◦Q(s)−1

Hence Q(uf) = 0. By Proposition 3.3.4, there exists t ∈ S such that uft = 0 in C. But u
is a monomorphism and so ft = 0. Proposition 3.3.4 then implies that Q(f) = 0. Hence
α = Q(f) ◦ Q(s)−1 = 0 whence Q(u) is monic. The statement for epimorphisms follows
dually.

3.4 Transport of Triangulation to the Localisation

Definition 3.4.1. Let C be a triangulated category and S a multiplicative system in C. We
say that S is compatible with the triangulation if the following axioms are satisfied:

MS4 s ∈ S if and only if Ts ∈ S.

MS5 If (f, g, h) is a morphism of triangles with f, g ∈ S then h ∈ S.

Theorem 3.4.2. Let C be a triangulated category and S a multiplicative system in C com-
patible with the triangulation. Then S−1C inherits a unique triangulation from C making the
localisation functor Q : C → S−1C into a δ-functor. Furthermore, Q is universal amongst
δ-functors T : C → D of triangulated categories that map S to isomorphisms.

Proof. We define a triangulated structure on S−1C as follows. By MS4, the composition
Q ◦ T maps morphisms in S to isomorphisms. By the universal property of Q, there thus
exists a unique functor S−1T : S−1C → S−1C such that the diagram

11



C C

S−1C S−1C

T

Q Q

S−1T

commutes. It then follows that S−1T is an automorphism which we denote from now on by
T by abuse of notation.

Take as triangles in S−1C all diagrams isomorphic to the images of triangles of C under
the action of the localisation functor Q : C → S−1C. It is now immediate from the definition
that, should these data provide a triangulated structure for S−1C, Q is a δ-functor.

We now verify the axioms of a triangulated category.

TR1: Every sextuple (A,B,C, φ, ψ, ρ) which is isomorphic to a triangle is a triangle by
definition. Now fix a morphism φ : X → Y in S−1C. We need to exhibit a triangle
(X, Y, Z, φ, ψ, ρ). Choose a representative roof s−1f : X → X ′ → Y of φ. By TR1 for C, we
can find a triangle (X ′, Y, Z, f, g, h). Applying the localisation functor yields the triangle
(X ′, Y, Z,Qf,Qg,Qh) in S−1C. Now consider the commutative diagram

X ′ Y Z TX ′

X Y Z TX

Qf

Qs

Qg

1Y

Qh

1Z T◦Qs

φ Qg T◦Q(s◦h)

in S−1C. The vertical arrows are clearly isomorphisms and so (X, Y, Z, φ,Qg, T ◦ Q(s ◦ c))
is a triangle in S−1C. Finally, the sextuple (X,X, 0, idX , 0, 0) is clearly a triangle in S−1C
since it is the image of the identity triangle in C under Q.

TR2: Fix a triangle ∆ = (X, Y, Z, φ, ψ, ρ) in S−1C. We need to show that ∆′ = (Y, Z, TX, ψ, ρ,−Tφ)
is also a triangle. By the definition of the candidate triangulation on S−1C, (X, Y, Z, φ, ψ, ρ)
is the isomorphic image under Q of some triangle (X, Y, Z, f, g, h) in C. By TR2 for C, we
have that (Y, Z, TZ, g, h,−Tf) is also a triangle. The image under Q of this triangle is then
clearly isomorphic to ∆′.

TR3: Fix triangles (X, Y, Z, φ, ψ, ρ) and (X ′, Y ′, Z ′, φ′, ψ′, ρ′) in S−1C and suppose they
arise from triangles (A,B,C, u, v, w) and (A′, B′, C ′, u′, v′, w′) in C such that we have the
following commutative diagrams in S−1C

X Y Z TX

A B C TA

φ

ξ

ψ

η

ρ

ζ T (ξ)

Q(u) Q(v) Q(c)

X ′ Y ′ Z ′ TX ′

A′ B′ C ′ TA′

φ′

ξ′

ψ′

η′

ρ′

ζ′ T (ξ′)

Q(u′) Q(v′) Q(c′)

with vertical maps isomorphisms. Now suppose that we have a commutative diagram

X Y Z TX

X ′ Y ′ Z ′ TX ′

φ

λ

ψ

µ

ρ

T (λ)

φ′ ψ′ ρ′

We need to exhibit a morphism ν : Z → Z ′ in S−1C such that the triple (λ, µ, ν) is a
morphism of triangles. Combining these three commutative diagrams provides us with a
commutative diagram in S−1C

12



A B C TA

A′ B′ C ′ TA′

Q(u)

ξ′λξ−1

Q(v)

η′µη−1

Q(w)

Q(u′) Q(v′) Q(w′)

By Corollary 3.3.5, we can find a representative roof s−1a : A → R → A′ of ξ′λξ−1, a
represntative roof t−1b : B → S → B′ of η′µη−1 and a morphism m : R → S in C fitting in
a diagram

A B C TA

R S M TR

A′ B′ C ′ TA′

u v w

s

a

m

t

b

n

r

c

o

T (s)

T (a)

u′ v′ w′

such that the squares consisting of filled in arrows commute. By TR3, we can find a sextuple
(R, S,M,m, n, o) making the central row a triangle in C. TR1 then implies that we can find
r and c making the triples (s, t, r) and (a, b, c) into morphisms of triangles. Moreover, MS5
implies that r ∈ S. Now let ν ′ be the equivalence class of the roof r−1c in S−1C. Then the
morphism ν = ζ ′−1ν ′ζ is the desired morphism making the triple (λ, µ, ν) into a morphism
of triangles in S−1C.
TR4: The proof of TR4 follows the same principle as TR3 but we omit its (lengthy) proof.

4 The Derived Category

4.1 The Category of Complexes

Definition 4.1.1. Let C be a category. We define a graded C-object to be a family
X• = {X i }i∈Z of objects X i of C. The object X i is called the ith component of X•.

We denote by Cp(X•, Y •) the collection of graded morphisms of degree p ∈ Z. That
is to say, the set of families of morphisms f • = { f i }i∈Z such that f i ∈ C(X i, Y i+p). Given
graded C-objects X•, Y •, Z•, f • ∈ Cp(X•, Y •) and g ∈ Cq(X•, Y •), we denote by |f | the
degree of f and define fg ∈ Cp+q(X•, Z•) by setting (fg)i = f i+pgi.

Definition 4.1.2. Let C be an additive category. We define a complex in C to be a pair
(X•, dX) consisting of a graded C-object toegether with a graded morphism dX ∈ C1(X•, X•)
called the differential of X• such that dXdX = 0. We will often omit the subscript for the
differential when it is clear what complex we are discussing. A complex will often be viewed
as a sequence

· · · X i−1 X i X i+1 · · ·di−1 di

We define a morphism of complexes f : X• → Y • to be a graded morphism f ∈
C0(X•, Y •) such that fdX = dY f . In other words, we require that the diagram

· · · X i−1 X i X i+1 · · ·

· · · Y i−1 Y i Y i+1 · · ·

f i−1

di−1
X diX

f i f i+1

di−1
Y diY
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commutes. We denote by Com(C) the category whose objects are the complexes in C and
whose morphisms are the morphisms of complexes.

Proposition 4.1.3. Let A be an additive (resp. abelian) category. Then Com(A) is also
additive (resp. abelian).

Proof. This follows immediately by taking all the necessary structure (i.e AbGrp-enrichment,
(co)limits, (co)images) to be defined component-wise and then using the fact that A is
additive (resp. abelian).

Remark. Let A be an additive category.

1. Given a complex X• in Com(A), we say that X• is a complex concentrated at
degree j if X i = 0 for all i 6= j and Xj = X for some object X of A.

2. There is a canonical fully faithful functor An : A → Com(A) sending objects to the
corresponding complex concentrated at degree n together with the trivial differential.
Given an object A ∈ A, we denote An(A) = A[n]•.

Definition 4.1.4. Let A be an abelian category, X• a complex in Com(A) and q ∈ Z. We
define the qth cocycle object, coboundary object and cohomology object of X• to
be

Zq(X•) = ker dqX

Bq(X•) = im dq−1
X

Hq(X•) = coker(Bq(X•)→ Zq(X•))

= coker(im dq−1
X → ker dqX)

respectively. This clearly defines an exact functor Hq : Com(A) → A. We say that X• is
acyclic if Hq(X•) = 0 for all q ∈ Z.

Definition 4.1.5. Let A be an additive category. We define the following full subcategories
of Com(A):

1. Com+(A): The category of bounded below complexes in A. In other words, Com+(A)
consists of all complexes X• for which X i = 0 for i� 0.

2. Com−(A): The category of bounded above complexes in A. In other words, Com−(A)
consists of all complexes X• for which k ∈ Z with X i = 0 for i� 0.

3. Comb(A) = Com+(A) ∩ Com−(A)

4.2 The Homotopy Category

Definition 4.2.1. Let A be an additive category and u ∈ Com(A)(X•, Y •) a morphism
of complexes. We say that u is null-homotopic if there exists a graded morphism k ∈
A−1(X•, Y •) such that u = dY k + kdX . Given another morphism v ∈ Com(A)(X•, Y •), we
say that u is homotopic to v, denoted u ∼ v, if u− v is null-homotopic.

Proposition 4.2.2. Let A be an additive category. Then the homotopy relation on Com(A)(X•, Y •)
is an equivalence relation compatible with composition of morphisms.
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Proof. Fix a morphism u ∈ Com(A)(X•, Y •). Then u − u = 0 ∼ 0 so that u is homotopic
to itself. Fix another morphism v ∈ Com(A)(X•, Y •) and suppose that u ∼ v. Then
u − v = dY k + kdX for some k ∈ A−1(X•, Y •). Define k′ ∈ A−1(X•, Y •) to be k′ = −k.
Then

v − u = −(u− v) = −(dY k + kdX) = dY k
′ + k′dX

so that v ∼ u. Fix a further morphism w ∈ Com(A)(X•, Y •) and suppose that u ∼ v and
v ∼ w. Then u − v = dY k + kdX and v − w = dYm + mdX for some k,m ∈ A−1(X•, Y •).
It then follows that

u− w = u− v + v − w = dY k + kdX + dYm+mdX = dY (k +m) + (k +m)dX

so that u ∼ w. To show that ∼ is compatible with composition in A, suppose that we are
given f1, f2 ∈ Com(A)(X•, Y •) and g1, g2 ∈ Com(A)(Y •, Z•) such that f1 ∼ f2 and g1 ∼ g2.
Then f1 − f2 = dY k + kdX and g1 − g2 = dZ l + ldZ for some k, l ∈ A−1(X•, Y •). We need
to show that g1f1 ∼ g2f2. Observe that

g1f1 − g2f2 = g1f1 − g2f1 + g2f1 − g2f2

= (g1 − g2)f1 + g2(f1 − f2)

= (dZ l + ldY )f1 + g2(dY k + kdX)

= dZ lf1 + ldY f1 + g2dY k + g2kdX

= dZ lf1 + lf1dX + dZg2k + g2kdX

= dZ(lf1 + g2k) + (lf1 + g2k)dX

so that lf1 + g2k is a homotopy from g1f1 to g2f2.

Definition 4.2.3. LetA be an additive category and∼ the relation of homotopy equivalence
on ComA. We define the homotopy category of A to be the quotient category K(A) =
Com(A)/ ∼. For ∗ ∈ {∅,+,−, b }, we define the full subcategory K∗(A) of K(A) to be the
image of Com∗(A) under the canonical quotient functor Com(A)→ K(A).

Proposition 4.2.4. Let A be an additive category. Then K(A) is additive.

Proof. This is immediate from the fact that the quotient category of an additive category
is additive.

Remark. Note that it is not the case that if A is abelian then K(A) is abelian.

Proposition 4.2.5. Let A be an abelian category. Then the cohomology functor Hq :
Com(A))→ A descends to a functor

Hq : K(A)→ A

Proof. We need to show that Hq is invariant on homotopy classes of morphisms of Com(A).
To this end, suppose that u, v ∈ Com(A)(X•, Y •) are two homotopic morphisms so that
u − v = dY k + kdX for some k ∈ A−1(X•, Y •). Then the restriction to ker(dqX) of Hq is
the restriction to ker(dqX) of dY k + kdX . Hence Hq(u− v) = dY k. Moreover, passing to the
cokernel

coker(im dq−1
Y → ker dqY )

implies that Hq(u− v) = 0. Hence Hq(u) = Hq(v).
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4.3 Triangulating the Homotopy Category

Definition 4.3.1. LetA be an additive category. We define the shift functor T : Com∗(A)→
Com∗(A) to be the additive automorphism that associates to every complex (X•, dX) the
complex (T (X•), dT (X•)) where T (X•)i = X i+1 for all i ∈ Z and dT (X•) = −dX . We will
often denote TX• as just X[1]•.

Lemma 4.3.2. Let A be an abelian category. Then the shift functor T : Com∗(A) →
Com∗(A) descends to an additive automorphism

T : K∗(A)→ K∗(A)

Proof. We need to check that T : Com∗(A)→ Com∗(A) is constant on homotopy classes of
morphisms in Com∗(A)(X•, Y •). To this end, fix f, g ∈ Com∗(A)(X•, Y •) and suppose that
k ∈ C−1(X•, Y •) is a homotopy from f to g so that f − g = dY k + kdX . Then, in Com(A),
we have

T (f − g)i = f i+1 − gi+1 = diY k
i+1 + ki+2diX

= −diTY ki+1 − ki+2diTX

so that −k is a homotopy from Tf to Tg. It then follows that in K(A) we have Tf = Tg.

Definition 4.3.3. Let A be an additive category and f ∈ Com∗(A)(X•, Y •) a morphism.
We define the mapping cone of f to be the complex given by the data

C(f)• = X[1]• ⊕ Y •

dif =

(
−di+1

X 0
f i+1 diY

)
The mapping cone can be visualised as a diagram

· · · X i X i+1 X i+2 · · ·

⊕ ⊕ ⊕

· · · Y i−1 Y i Y i+1 · · ·

−diX

f i

−di+1
X

f i+1

−di−1
Y −diY

Moreover if A is abelian the canonical projection πf : C(f)• → X[1]• and inclusion νf :
Y • → C(f)• induce a canonical exact sequence

0 Y • C(f)• X[1]• 0
νf πf

of complexes in Com(A).

Lemma 4.3.4. Let A be an additive category, X• ∈ Com∗(A) a complex and C(idX•) the
mapping cone of the identity morphism idX•. Then the identity morphism idC(idX• ) is null-
homotopic. In particular, C(idX•) is the zero complex in K∗(A).

Proof. Consider the morphism of complexes defined by

ki =

(
0 idiX•
0 0

)
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We claim that k is a homotopy from idC(idX• ) to the 0 map. Indeed,

di−1
f ki + ki+1dif =

(
−diX• 0
idiX• di−1

X•

)(
0 idiX•
0 0

)
+

(
0 idi+1

X•

0 0

)(
−di+1

X• 0
idi+1
X• diX•

)
=

(
0 −diX• id

i
X•

0 idiX•

)
+

(
idi+1
X• idi+1

X• d
i
X•

0 0

)
=

(
idi+1
X• 0
0 idiX•

)
= idC(idX• )

Proposition 4.3.5. Let A be an additive category. Suppose that f, g ∈ Com∗(A)(X•, Y •)
are homotopic morphisms. Then C(f)• ∼= C(g)•.

Proof. Suppose that k ∈ A−1(X•, Y •) is a homotopy between f and g so that f − g =
dY k + kdX . We claim that the map

ui =

(
idi+1
X• 0

−ki+1 idiY •

)
is an isomorphism of mapping cones u : C(g)• → C(f)•. We must first check that it is a
morphism. Observe that

ui+1dig =

(
idi+2
X• 0

−ki+2 idi+1
Y •

)(
−di+1

X 0
gi+1 diY

)
=

(
−idi+2

X• d
i+1
X 0

gi+1 + ki+2di+1
X idi+1

Y • d
i
Y

)
=

(
−di+1

X idi+2
X• 0

f i+1 − diY ki+1 diY idi+1
Y •

)
=

(
−di+1

Xi 0
f i+1 diY

)(
idi+1
X• 0

−ki+1 idiY •

)
= difu

i

It is now easy to see that u is an isomorphism with inverse given by the map

vi =

(
idi+1
X• 0

ki+1 idiY •

)

Corollary 4.3.6. Let A be an abelian category and f ∈ Com∗(X•, Y •) a morphism of
complexes. Then the canonical projection πf : C(f)• → X[1]• and inclusion νf : Y • → C(f)•

are compatible with homotopy.

Proof. By the Proposition, we have that C(f) ∼= C(g) and so πf = πg. A similar argument
applies to νf and νg.

Definition 4.3.7. Let A be an abelian category. We define a standard triangle in K∗(A)
to be a diagram of the form
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X• Y • C(f)• X[1]•
f νf πf

Theorem 4.3.8. Let A be an abelian category. Then K∗(A) is triangulated by the following
data:

1. The shift functor is given by T : K∗(A)→ K∗(A).

2. The triangles are given by the collection of all diagrams in K∗(A) that are isomorphic
to standard triangles.

Proof.

TR1: The first two parts of TR1 are immediate by the definitions. Lemma 4.3.4 ensures
that the sextuple (X•, X•, 0, idX , 0, 0) is indeed a triangle.

TR2: It suffices to prove TR2 for the standard triangle (X•, Y •, C(f)•, f, νf , πf ). We
claim that the triangle (Y •, C(f)•, X[1]•, νf , πf ,−f [1]) is isomorphic to the standard tri-
angle (Y •, C(f)•, C(νf )

•, νf , ννf , πνf ) for νf . To this end, define morphisms

φ : X[1]• → C(νf )
•

φi = (−f i+1, idi+1
X• , 0)

and

ψ : C(νf )
• → X[1]•

ψi = (0, idi+1
X• , 0)

We claim that φ and ψ are mutually inverse and make the diagram

Y • C(f)• X[1]• Y [1]•

Y • C(f)• C(νf )
• Y [1]•

νf

idY •

πf

idC(f)•

−f [1]

φ idY [1]•

νf ννf πνf

ψ

commute so that (idY • , idC(f)• , φ) and (idY • , idC(f)• , ψ) are isomorphisms of triangles. First
observe that πνf ◦ φ = −f [1] so that the downwards direction right-hand square commutes.
Similarly, ψ ◦ ννf = πf so that the upwards direction central square commutes.

To see that the downwards direction central square commutes, consider the morphism

u =

 0 −idY •
0 0
0 0

 : (C(f)• = X[1]• ⊕ Y •)→ (C(νf )
• = Y [1]• ⊕X[1]• ⊕ Y •)
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Then

di−1
νf
ui + ui+1dif =

 −diY 0 0
0 −diX 0
νif f i di−1

Y

 0 −idiY •
0 0
0 0

+

 0 −idi+1
Y •

0 0
0 0

( −di+1
X 0

f i+1 diY

)

=

 0 diY idiY
0 0

−idiY • 0

+

 −idi+1
Y • f

i+1 −idi+1
Y diY

0 0
0 0


=

 f i+1 0
0 0

−idiY • 0


=

 f i+1 0
0 idi+1

X•

0 0

−
 0 0

0 idi+1
X•

idiY • 0


= φ ◦ πf − ννf

so that φ ◦ πf is homotopic to ννf . Hence in K∗(A), we have that φ ◦ πf = ννf and the
downwards direction central square commutes. A similar argument with the homotopy
v = (0, 0, idY [1]•) ensures that the upwards direction right-hand square commutes.

It remains to show that φ and ψ are mutually inverse. But this follows from the fact
that ψ ◦ φ = idX[1]• and φ ◦ ψ ∼ idC(νf ) via the homotopy map 0 0 −idY •

0 0 0
0 0 0

 : C(νf )
• → C(νf )

•

TR3: It suffices to prove TR3 for standard triangles. Suppose we are given a commutative
diagram

X• Y • C(f)• X[1]•

X ′• Y ′• C(f ′)• X ′[1]•

f

α

νf

β

πf

γ α[1]

f ′ νf ′ πf ′

in K∗(A). Then there exists a homotopy u between f ′ ◦ α and β ◦ f . We claim that

γi =

(
αi+1 0
−ui+1 βi

)
: C(f)• → C(f ′)•

completes the above diagram to a morphism of triangles. We must first verify that γ is
indeed a morphism of complexes γ : C(f)• → C(f ′)•. Indeed,

dif ′γ
i =

(
−di+1

X 0
f ′i+1 diY

)(
αi+1 0
−ui+1 βi

)
=

(
−di+1

X αi+1 0
f ′i+1αi+1 − diY ui+1 diY β

i

)
=

(
−αi+2di+1

X 0
βi+1f i+1 + ui+2di+1

X βi+1diY

)
=

(
αi+2 0
−ui+2 βi+1

)(
−di+1

X 0
f i+1 diY

)
= γi+1dif
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It is immediate from the definition of γ that the above diagram is completed to a commu-
tative diagram in K∗(A).

TR4: Omitted.

Proposition 4.3.9. Let A be an abelian category. Then the cohomology functor H0 :
K∗(A)→ A is cohomological.

Proof. It suffices to prove the Proposition for standard triangles. To this end, fix a morphism
of complexes f : X• → Y •. Then we have a short exact sequence

0 Y • C(f)• X[1]• 0
νf πf

in Com∗(A). Since Com∗(A) is abelian, this induces a long exact sequence of cohomology
objects

· · · H i(Y •) H i(C(f)•) H i(X[1]•)

H i+1(Y •) H i+1(C(f)•) H i+1(X[1]•) · · ·

νif πif

δi

νi+1
f πi+1

f

where δ is the connecting morphism obtained from the Snake Lemma. Now fix a cohomology
class [c] ∈ H i(X[1]•) = H i+1(X•) for some cocycle c ∈ X i+1. Then πf (0, c) = c. On the
other hand,

df (c, 0) =

(
−di+1

X 0
f i+1 diY

)(
c
0

)
=

(
−di+1

X (c)
f i+1(c)

)
=

(
0

f i+1(c)

)
= νi+1

f (f i+1(x))

Hence by the definition of the connecting morhism δ, we have that δ(ξ) = [f(x)] whence
δi = f i. The above long exact sequence thus becomes

· · · H i(Y •) H i(C(f)•) H i(X[1]•)

H i+1(Y •) H i+1(C(f)•) H i+1(X[1]•) · · ·

νif πif

f i+1

νi+1
f πi+1

f

But this is exactly the sequence obtained by applying the functorH0 to the standard triangle

X• Y • C(f)• X[1]•
f νf πf

and then extending in either direction using the axiom TR2. Hence H0 : K∗(A) → A is
cohomological.

4.4 The Derived Category

Throughout this section, assume that A is an abelian category.

Definition 4.4.1. Let f ∈ K∗(A)(X•, Y •) be a morphism. We say that f is a quasi-
isomorphism if it induces an isomorphism

Hq(f) : Hq(X•)
∼−→ Hq(Y •)

on cohomology objects. We denote by Qis∗ = Qis∗(A) the collection of all quasi-isomorphisms
in K∗(A) for ∗ ∈ {∅,+,−, b }.
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Proposition 4.4.2. Let A be an abelian category. Then Qis∗ is a multiplicative system in
K∗(A) and is compatible with the triangulation.

Proof.

MS1: It is immediate that the composition of two quasi-isomorphisms is again a quasi-
isomorphism.

MS2: Fix a quasi-isomorphism s : Z• → Y • and suppose we are given a diagram

Z•

X• Y •

s

u

By TR1, we can embed s into a triangle ∆ = (Z•, Y •, N•, s, f, g) and fu into a triangle
∆′ = (W •, X•, N•, t, fu, h) so that we have a diagram

W • Z•

N• N•

X• Y •

v

t

s
h

idN•

g

fu
u

f

Then the tuple (u, idN) is a map of two vertices of ∆′ to ∆ so that there exists a morphism
v : W • → Z• such that (v, u, idN•) is a morphism of triangles. By construction we have that
sv = ut so it remains to show that t is a quasi-isomorphism.

By the long exact sequence of cohomology for ∆ we have that H i(N•) = 0 for all i since
s induces an isomorphism H i(Z•) → H i(Y •) for all i. Inserting this into the long exact
sequence of cohomology for ∆′ then implies that t induces an isomorphism for all i so that
t is a quasi-isomorphism.

The dual axiom to MS2 hold by dualising the above proof.

MS3: By additivity it suffices to show that, given w ∈ K∗(A)(X•1 , Y
•

1 ), the following two
statements are equivalent

• There exists s ∈ K∗(A)(Y •1 , Y
•

2 ) ∩ Qis∗ such that sw = 0.

• There exists t ∈ K∗(A)(X•2 , X
•
1 ) ∩ Qis∗ such that wt = 0.

We show that the first statement implies the second one. The reverse implication follows
dually. By TR1, we can construct a triangle ∆ = (Z•, Y •1 , Y

•
2 , x, s, y). By Proposition 2.2.1,

we have a portion of a long exact sequence

K∗(A)(X•1 , Z
•) K∗(A)(X•1 , Y

•
1 ) K∗(A)(X•1 , Y

•
2 )x∗ s∗

Since sw = 0 it follows that w ∈ ker s∗ and so there exists some z ∈ K∗(A)(X•, Z•) such
that x∗(z) = w.

Appealing once more to TR1, we can construct a triangle ∆′ = (X•2 , X
•
1 , Z

•, t, z,m)
leading to an exact sequence

K∗(A)(Z•, Y •1 ) K∗(A)(X•, Y •1 ) K∗(A)(X•2 , Y
•

1 )z∗ t∗
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Since w ∈ im z∗ we have that t∗(w) = 0 and so wt = 0. It remains to show that t is a
quasi-isomorphism. By the long exact sequence of cohomology for the triangle ∆ we know
that H i(Z•) = 0 for all i since s is a quasi-isomorphism. Inserting this into the long exact
sequence of cohomology for the triangle ∆′ then implies that t is a quasi-isomorphism.

MS4: It is immediate that s ∈ Qis∗ if and only if s[1] ∈ Qis∗ since shifting to the left by one
position does not affect the fact that s induces an isomorphism on cohomology.

MS5: Let (X•1 , Y
•

1 , Z
•
1 , φ1, ψ1, ρ1) and (X•2 , Y

•
2 , Z

•
2 , φ2, ψ2, ρ2) be triangles in K∗(A). Given

quasi isomorphisms f : X•1 → X•2 and g : Y •1 → Y •2 , let h : Z•1 → Z•2 be the morphism
completing the triple (f, g, h) to a morphism of triangles. We need to show that h is also a
quasi isomorphism.

Since H0 : K∗(A)→ A is a cohomological functor we have, for each i ∈ Z, a commutative
diagram with exact rows

H i(X•1 ) H i(Y •1 ) H i(Z•1) H i+1(X•1 ) H i+1(Y •1 )

H i(X•2 ) H i(Y •2 ) H i(Z•2) H i+1(X•2 ) H i(Y ′•2 )

∼

f i

φi1

∼

gi

ψi1

hi

ρi1

∼

f i+1

φi+1
1

∼

gi+1

φi2 ψi2 ρi2 φi+1
2

By the 5-Lemma, we then have that hi is an isomorphism for all i. Hence h is a quasi-
isomorphism.

Definition 4.4.3. We define the derived category D∗(A) of A to be the localisation

D∗(A) = (Qis∗)−1K∗(A)

Theorem 4.4.4. D∗(A) is a triangulated category. Moreover, the localisation functor Q :
K∗(A) → D∗(A) is universal amongst additive δ-functors that map quasi-isomorphisms to
isomorphisms.

Proof. This follows from Theorem 4.3.8 and 3.4.2.

4.5 Properties and Subcategories

Throughout this section, let A be an abelian category.

Proposition 4.5.1. Hq : K∗(A)→ A extends uniquely to a functor Hq : D∗(A)→ A.

Proof. Let s ∈ Qis∗ be a quasi-isomorphism. By definition, Hq(s) is an isomorphism in A.
Hence Hq necessarily factors uniquely through the localisation functor Q : K∗(A)→ D∗(A).
By abuse of notation we denote this factorisation Hq : D∗(A)→ A.

Proposition 4.5.2. Let α ∈ D∗(A)(X•, Z•) be a morphism. Then α is an isomorphism if
and only if it admits a representative roof s−1f such that α is a quasi-isomorphism.

Proof. The backwards direction is clear by the definition of the localisation. Conversely,
suppose that α is an isomorphism and let s−1f be a representative roof. Then α = Q(f) ◦
Q(s)−1. H∗(α) = H∗(f) ◦H∗(s)−1. Since both H∗(α) and H∗(s)−1 are isomorphisms in A
it follows that so is H∗(f). Then f is a quasi-isomorphism as claimed.

Proposition 4.5.3. Let f ∈ K∗(A)(X•, Y •) be a morphism. If Q(f) = 0 then the induced
map on cohomology f ∗ is also 0.
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Proof. By Proposition 3.3.4, there exists a quasi-isomorphism s : Z• → X• such that
fs = 0. Then H∗(f) ◦H∗(s) = H∗(fs) = H∗(0) = 0. But H∗(s) is an isomorphism and so
H∗(f) = 0.

Proposition 4.5.4. Denote by B the full subcategory of D(A) consisting of the complexes
which are acyclic in all non-zero degrees. Then the canonical functor F : A → B induces an
equivalence of categories.

Proof. It suffices to show that F is fully faithful and essentially surjective. To this end, fix
X, Y ∈ A. By abuse of notation, identify X and Y with their images inside D(A). We need
to show that the map

F : A(X, Y )→ D(A)(FX,FY )

of abelian groups is bijective. Suppose u ∈ A(X, Y ) is a morphism such that F (u) = 0.
Then Q(u) = 0. Proposition 4.5.3 then implies that the induced map on cohomology u∗ is
also zero. But u∗ = u since u is a morphism of complexes concentrated at 0. Hence the map
is injective.

Now fix a morphism of complexes v ∈ D(A)(FX,FY ) represented by a roof s−1f :
FX → Z• → FY . By hypothesis, we have an isomorphism s∗ : H0(Z•) → X and a
morphism f ∗ : H0(Z•) → Y . Denote u = f ∗(s∗)−1. Denote by Z•≤0 the complex obtained
by truncated Z• on positive degrees:

Zi
≤0 =


0 if i > 0
ker d0 if i = 0
Zi if i < 0

Then the canonical map ι : Z•≤0 → Z• is a quasi-isomorphism and we have a commutative
diagram

Z0
≤0 Z0

H0(Z•) X

ι

s

s∗

And so we have a commutative diagram

Z•

X Z•≤0 Y

X

s f

sι

ι

sι
idX•

u

which implies that Q(u) = v and so F is fully faithful.
It remains to show that F is essentially surjective. Fix a complex B• ∈ obB that is

acyclic in all non-zero degrees. We need to exhibit A ∈ obA such that FA ∼= B•. Denote
A = H0(B•) and Z• = B•≤0. Then the canonical maps ι : Z• → B• and ρ : Z• → FX
are quasi-isomorphisms since H i(B•) = 0 for all i 6= 0. Then the morphism α : FX → B•

represented by the roof ρ−1ι is an isomorphism by Proposition 4.5.2.

Proposition 4.5.5. For all ∗ ∈ {+,−, b }, the canonical functors F ∗ : D∗(A)→ D(A) are
fully faithful.
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Proof. Suppose that ∗ = +. The case of ∗ = − follows dually and for ∗ = b is a corollary of
these two cases. By Proposition 3.3.2 we need to show that if s ∈ K(X•, Y •) ∩ Qis, where
X• ∈ ob K+(A), then there exists Z• ∈ ob K+(A) and a morphism f : Y • → Z• such that
fs ∈ Qis.

Clearly, we can assume that X i = 0 for all i < 0. Since s induces an isomorphism on
cohomology objects, it follows that H i(Y •) = 0 for all i < 0. Now denote

Zi =


0 if i < 0
coker(d : Y −1 → Y 0) if i = 0
Y i if i > 0

Then Z• ∈ ob K+(A) and the obvious morphism Y • → Z• is clearly a quasi-isomorphism.

4.6 Short Exact Sequences and the Mapping Cylinder

Throughout this section we shall assume that A is an abelian category.

Definition 4.6.1. Let f ∈ Com∗(A)(X•, Y •) be a morphism. We define the mapping
cylinder of f to be the complex given by the data

Cyl(f)• = X[1]• ⊕X• ⊕ Y •

diCyl(f) =

 −di+1
X 0 0

−idi+1
X• diX 0

f i+1 0 diY


The mapping cylinder can be visualised as a diagram

· · · X i X i+1 X i+2 · · ·

⊕ ⊕ ⊕

· · · X i−1 X i X i+1 · · ·

⊕ ⊕ ⊕

· · · Y i−1 Y i Y i+1 · · ·

−diX

f i

idiX•

−di+1
X

f i+1

idi+1
X•

di−1
X

diX

di−1
Y diY

The canonical projection κf : Cyl(f)• → C(f)• and inclusion ιf : X• → Cyl(f)• induce a
canonical exact sequence

0 X• Cyl(f)• C(f)• 0
ιf κf

of complexes in Com(A).

Lemma 4.6.2. Let f ∈ Com∗(A)(X•, Y •) be a morphism. Then there exist morphisms
σ : Y • → Cyl(f)• given by σi = (0, 0, idiY •) and τ : Cyl(f)• → Y • given by τ i = (0, f i, idiY •)
such that

1. The diagram with exact rows
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0 Y • C(f)• X[1]• 0

0 X• Cyl(f)• C(f)• 0

X• Y •

νf

σ

πf

idX•

ιf

idX•

κf

τ

f

is commutative.

2. τ ◦ σ = idY • and σ ◦ τ is homotopic to idCyl(f)•. In particular, Y • and Cyl(f)• are
isomorphic in K∗(A) and thus in D∗(A).

3. σ and τ are quasi-isomorphisms.

Proof.

Part 1: It is evident from the definitions that the two squares in the above diagram commute

Part 2: It is clear that τ ◦ σ = idY • . We claim that the map given by the matrix

ki =

 0 0 0
0 idiX• 0
0 0 0


is a homotopy from σ ◦ τ to idCyl(f)• . Indeed, di−1

Cyl(f)k
i + ki+1diCyl(f) is given by −diX 0 0

−idiX• di−1
X 0

f i 0 di−1
Y

 0 0 0
0 idiX• 0
0 0 0

+

 0 0 0
0 idi+1

X• 0
0 0 0

 −di+1
X 0 0

−idi+1
X• diX 0

f i+1 0 diY


=

 0 −diX idiX• 0
0 −idiX• 0
0 f i 0

+

 −idi+1
X• idi+1

X• d
i
X 0

0 0 0
0 0 0


=

 −idi+1
X• 0 0

0 −idiX• 0
0 f i 0


=

 0 0 0
0 0 0
0 f i idiY •

−
 idi+1

X• 0 0
0 idiX• 0
0 0 idiY •


= σi ◦ τ i − idiCyl(f)•

Part 3: By Part 2, σ ◦ τ and τ ◦ σ are both homotopic to the identity maps and, so, induce
the identity map on cohomology. Hence

H i(τ) ◦H i(σ) = H i(τ ◦ σ) = H i(idCyl(f)•) = idHi(Cyl(f)•)

Similarly, H i(σ)◦H i(τ) = idHi(Y •) and so H i(σ) and H i(τ) are isomorphisms whence σ and
τ are quasi-isomorphisms.

Proposition 4.6.3. Let
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0 X• Y • Z• 0
f g

be a short exact sequence in Com∗(A). Then there exists a triangle

X• Y • Z• X[1]•
f g

in D∗(A).

Proof. Consider the diagram with exact rows

0 X• Cyl(f)• C(f)• 0

0 X• Y • Z• 0

ι

idX•

κf

τ γ

f g

Define a morphism of complexes γ : C(f)• → Z• by γi(x, y) = gi(y). It is then clear that
the right hand square in the above diagram commutes. Now, idX• and τ are both quasi-
isomorphisms by the previous Lemma. The long exact sequence of cohomology together
with the 5-Lemma then imply that γ is itself a quasi-isomorphism. In particular, idX• , τ
and γ are all isomorphisms in D∗(A). Now consider the diagram

X• Y • C(f)• X[1]•

X• Y • Z• X[1]•

f

idX•

νf

idY •

πf

γ idX[1]•

f g νf◦γ−1

in D∗(A). For the commutativity of the second square, note that by the Lemma and the
definition of γ we have

γ ◦ νf = γ ◦ κf ◦ σ = g ◦ τ ◦ σ = g ◦ idY • = g

Hence this diagram is an isomorphism of triangles in D∗(A) and so

X• Y • Z• X[1]•
f g νf◦γ−1

is the desired triangle of the Proposition.

5 Derived Functors
Throughout this section we assume that A and B are abelian categories. We denote

by QisA and QisB the collections of quasi-isomorphisms in K∗(A) and K∗(B) respectively.
Moreover, let QA : K∗(A)→ D∗(A) and QB : K∗(B)→ D∗(B) be the localisation functors.

5.1 Exact Functors

Proposition 5.1.1. Let F : A → B be an exact functor. Then

1. F extends naturally to a functor F ∗ : Com∗(A)→ Com∗(B) which preserves homotopy
equivalences.

2. F ∗ descends to a functor F ∗ : K∗(A)→ K∗(B) such that F ∗(QisA) ⊆ QisB.

3. F ∗ extends to a δ-functor F ∗ : D∗(A)→ D∗(B).
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Proof.

Part 1: Let F ∗ : Com∗(A) → Com∗(B) be given component-wise by F . That F ∗ enjoys
the properties of a functor is immediate from the fact that F does. Now suppose that
f, g ∈ Com∗(X•, Y •) are morphisms which are homotopic via k ∈ A−1(X•, Y •). Then it is
clear that F (f) is homotopic to F (g) via the homotopy F (k).2

Part 2: Since F ∗ : Com∗(A) → Com∗(B) is constant on homotopy classes of morphisms in
Com∗(A), it descends to a functor F ∗ : K∗(A)→ K∗(B). To show that F ∗(QisA) ⊆ QisB, we
first claim that F ∗ preserves acyclic complexes.

Fix an acyclic complex K• in K∗(A). Denote Bi = ker diK = im di−1
K . Then F maps the

short exact sequence

0 Bi Ki Bi+1 0ei pi

to a short exact sequence

0 F (Bi) F (Ki) F (Bi+1) 0
F (ei) F (pi)

Since diK = ei+1◦pi, we have that F (diK) = F (ei+1)◦F (pi). But F (ei+1) is an monomorphism
and F (pi) is an epimorphism. Hence F (Bi) is isomorphic to the image of di−1

K and F (Bi+1)
is isomorphic to the cokernel of F (di+1

K ). This is precisely what it means for the complex
F ∗(K•) to be acyclic.

Now observe that, given a morphism f ∈ K∗(X•, Y •), the long exact sequence of co-
homology implies that f is a quasi-isomorphism if and only if the mapping cone C(f) is
acyclic. Then, by the above argumentation,

f ∈ QisA ⇐⇒ C(f) is acyclic
=⇒ F ∗(C(f)) is acyclic
⇐⇒ C(F ∗(f)) is acyclic (F ∗(C(f)) ∼= C(F ∗(f)))
⇐⇒ F ∗(f) ∈ QisB

Part 3: Consider the composition QB ◦ F ∗ : K∗(A) → D∗(B). Then QB ◦ F ∗ maps QisA
to isomorphisms in D∗(B). By the universal property of QA, there exists a unique functor
F ∗ : D∗(A)→ D∗(B) such that the diagram

K∗(A) K∗(B)

D∗(A) D∗(B)

F ∗

QA QB

F ∗

commutes. It remains to show that F ∗ : D∗(A) → D∗(B) is a δ-functor. Since there is
an isomorphism F (C(f)) ∼= C(F (f)), it follows that the image of a standard triangle in
K∗(A) under F ∗ is a standard triangle in K∗(B). By Part 2, F ∗(QisA) ⊆ QisB so that any
diagram in K∗(A) that is quasi-isomorphic to a standard triangle has its images under F ∗
also quasi-isomorphic to a standard triangle. Passing to the derived categories, we see that
any diagram in D∗(A) that is isomorphic to a standard triangle has its image under F ∗ also
isomorphic to a standard triangle. Hence F ∗ maps triangles in D∗(A) to triangles in D∗(B)
whence F ∗ is a δ-functor.

2Note that here we did not use the full fact that F is exact - merely that it is additive.
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5.2 Resolutions

Definition 5.2.1. We say that a collection R = R(A) ⊆ obA of objects is admissible if
it contains the zero object and is closed under direct sums and isomorphisms. We denote
by Com∗(R) (resp. K∗(R)) the full subcategory of Com∗(A) (resp. K∗(R)) consisting of
complexes whose every component is an object of R.

Definition 5.2.2. Let R be an admissible collection of objects of A. We say that A has
enough right R-objects (resp. left R-objects) if for every A ∈ obA there exists an
R ∈ R and a monomorphism A → R (resp. an epimorphism R → A). Moreover, if A has
enough left and right R-objects we say that A has enough two-sided R-objects.

Definition 5.2.3. Let A• ∈ ob Com∗(A) be a complex. We define a right R-resolution
(resp. left R-resolution) of A• to be a complex R• ∈ Com∗(R) together with a quasi-
isomorphism A• → R• (resp. R• → A•).

Remark. Let A be an abelian category with enough injectives and let R be the collection of
injective objects of A. Then R is admissible. Consider the complex concentrated at degree
0 A[0]. Then a right R-resolution of A[0] is a complex X• whose every component is an
injective object of A, X i = 0 for i < 0 together with a quasi-isomorphism A[0]• → X•. This
is just the usual definition of an injective resolution of A.

Proposition 5.2.4. Let R be an admissible collection of objects of A and let X• ∈ Com+(A)
(resp. ∗ = −) be a complex. If R• and R′• are two right (resp. left) R-resolutions of X•
then R• and R′• are isomorphic in D+(A) (resp. ∗ = −).

Proof. This is immediate from the fact that resolutions are quasi-isomorphisms which be-
come isomorphisms in D+(A).

Proposition 5.2.5. Let R be an admissible collection of objects of A and suppose that A
has sufficiently many right (resp. left) R-objects. Then every object in Com+(A) (resp.
Com−(A) admits a monic right (resp. epic left) R-resolution.

Proof. Fix a complex A• ∈ ob Com+(A). We will exhibit a complex R• ∈ ob Com+(R)
together with a monomorphism that is a quasi-isomorphism r : A• → R•. Without loss of
generality, we may assume that Ai = 0 for all i < 0. We construct R• by induction on the
degree of the complex. Suppose that we have constructed Ri up to degree p ∈ Z+ and that
we have monomorphisms rq for q ≤ p which are quasi-isomorphisms for q ≤ p− 1. Consider
the diagram

· · · Ap−1 Ap Ap+1 · · ·

· · · Rp−1 Rp Z

Rp+1

dp−1
A

rp−1

dpA

rp rp+1

dp−1
R dpR

where Z is the apex of the pushforward of the morphisms dpA and coker(dp−1
R )◦rp.3 It follows

immediately from the definition of the pushforward that dpR ◦ rp = rp+1 ◦ dpA. Moreover, the
fact that dpR factors through the cokernel of dp−1

R implies that dpR ◦ d
p−1
R = 0.

3Note that, using Mitchell’s Embedding Theorem, we can interpret this cokernel as the projection map
πp : Rp → Rp/ im dp−1

R .
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Recall that, explicitly, the pushout Z is given by Z = (Rp/ im dp−1
R ⊕Ap+1)/M where M

is the subobject generated by the relations

((πp ◦ rp)(a), 0) ∼ (0,−dpA(a))

for all a ∈ Ap. Using this description, we show that rp+1 is monic. Fix x ∈ Ap+1 such that
rp+1(x) = (0, x) = 0. Then there exists a ∈ Ap such that (0, x) = ((πp ◦ rp)(a), dpA(a)).
Hence x = dpA(a) and there exists some y ∈ Rp−1 such that rp(a) = dp−1

R (y).
Now, rp−1 is a quasi-isomorphism. Hence we can always find u ∈ Ap−1 such that we have

the equality of cohomology classes [y] = [rp−1(u)]. In particular, y − rp−1(u) ∈ im dp−2
R and

so there exists some z ∈ Rp−2 such that y − rp−1(u) = dp−2
R (z). Applying dp−1

R to both sides
of this equation, we thus see that

rp(a) = dp−1
R (y) = (dp−1

R ◦ rp−1)(u) = (rp ◦ dp−1
A )(u)

But rp is monic and so a = dp−1
A (u). It then follows that x = dpA(a) = (dpA ◦ d

p−1
A )(u) = 0

and so rp+1 is monic.
We now show that (rp)∗ is an isomorphism. To this end, fix [c] ∈ Hp(A•) and suppose

that (rp)∗([c]) = 0. Then [rp(c)] = 0 which is to say rp(c) ∈ im dp−1
R . Hence there exists

y ∈ Ip−1 such that rp(c) = dp−1
R (y). As before, this implies that there exists u ∈ Ap−1 such

that [y] = [rp−1(u)] and dp−1
A (u) = c. Hence [c] = 0 and (rp)∗ is injective. To see that (rp)∗

is surjective, fix [y] ∈ Hp(R•). Then y ∈ ker dpR ⊆ im dp−1
R so that there exists z ∈ Rp−1

such that dp−1
R (z) = y. Since rp−1 is a quasi-isomorphism, there exists u ∈ Ap−1 such that

[z] = [rp−1(u)]. Then

y = dp−1
R (z) = (dp−1

R ◦ rp−1)(u) = (rp ◦ dp−1
R )(u)

which implies that [y] = [rp(dp−1
R (u))] = (rp)∗([dp−1

R (u)]) so that (rp)∗ is surjective.
Finally, we have, by hypothesis, an object Rp+1 ∈ R together with a monomomorphism

Z → Rp+1. By abuse of notation, redefine rp+1 and dpR to be the composition of rp+1 and
dpR respectively with this monomorphism. This then gives us a monic right R-resolution
A• → R•. For the case of left R-objects, we can simply dualise this argument to produce
an epic left R-resolution R• → A•.

Corollary 5.2.6. Let R be an admissible class and Qis∗R the collection of quasi-isomorphisms
in K∗(R). Then

1. Qis∗R is a multiplicative system.

2. If A has enough right (resp. left, two-sided) R-objects then the natural functor

F : (Qis∗R)−1K∗(A)→ D∗(A)

induces an equivalence between (Qis+
R)−1K+(R) (resp. ∗ ∈ {−, b }) and D∗(A).

Proof. That Qis∗R is a multiplicative system in K∗(R) follows the same proof as Proposition
4.4.2. It suffices to observe that this explicit construction involved passing to mapping cones
of certain morphisms. Since R is admissible, direct sums of R-objects are R-objects. In
particular, the mapping cone of a morphism in K∗(R) is again in K∗(R). Hence the proof
of Proposition 4.4.2 follows through in this case as well.

Now suppose that A has enough right R-objects. We first claim that F is fully faithful.
Observe that, by Proposition 3.3.2, it suffices to show that if s : R• → X• is a quasi-
isomorphism in Qis+ with R• ∈ K+(R) then there exists a quasi-isomorphism t : X• → R′•

29



with R′• ∈ K+(R) such that t ◦ s ∈ Qis+
R. Appealing to the Proposition, we can construct

a right R-resolution t : X• → R′• and it is clear that t ◦ s ∈ Qis+
R and so F induces an

equivalence onto a full subcategory of D+(A). Dualising this argument proves the case of
∗ = − and the case of ∗ = b follows by combining these two results.

To show that F is an equivalence onto D+(A), it suffices to show that F is essentially
surjective. To this end, fix a complex X• ∈ D+(A). By the Proposition, we can construct
a right R-resolution X• → R• for some R• ∈ K+(R). Then F (R•) ∼= X• in D+(A) so that
F is indeed essentially surjective. Dualising this argument proves the case of ∗ = −. Now
suppose that ∗ = b. Fix a bounded complex X• ∈ Db(A). Then we can construct a right
R-resolution s : X• → R• and then a left R-resolution t : R′• → R•. Clearly, R′• is a
bounded complex which is isomorphic to X• in Db(A) so that F is also essentially surjective
in this case.

5.3 Derived Functors

Throughout this section, let R be an admissible class of objects of A.

Definition 5.3.1. Let F : A → B be a left (resp. right) exact functor. We say that R
is adapted to F if F+ : Com+(R) → Com+(R) (resp. ∗ = −) maps acyclic complexes to
acyclic complexes.

Definition 5.3.2. Let F : A → B be a left-exact covariant functor. We define the right
derived functor of F (should it exist) to be a pair (RF, εF ) where RF : D+(A) → D+(B)
is a δ-functor and εF : QB ◦ F+ → RF ◦ QA is a natural transformation in the context of
the following diagram

K+(A) K+(B)

D+(A) D+(B)

F+

QA QB

RF

which is universal amongst pairs (G, ε). To be precise, given any δ-functor G : D+(A) →
D+(B) and a natural transformation ε : QB ◦ F+ → G ◦ QA, there exists a unique natural
transformation η : RF → G such that the diagram

QB ◦ F+

RF ◦QA G ◦QA

εF ε

ηQA

commutes.

Remark.

1. Given a right exact covariant functor F : A → B we define dually the left derived
functor (LF, εF ) where LF : D−(A) → D−(B) is a δ-functor and εF : LF ◦ QA →
QB ◦ F− is a natural transformation which is universal amongst pairs (G, ε) as above.

2. If F is a (right or left exact) contravariant functor then we swap the definitions of
right and left derived functors around.

3. Suppose that we are given a δ-functor F : K+(A) → K+(B). Then we can make the
same definitions for the right and left derived functors of F .
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From now on, we shall only deal with covariant left-exact functors F : A → B. Every-
thing follows through for the other cases in the Remark above by making the appropriate
modifications.

Lemma 5.3.3. Suppose that A has enough right R-objects. Let ∆ be a diagram

X• Y • Z• X[1]•
f

in (Qis+
R)−1K(R) that becomes a triangle in D+(A). Then ∆ is isomorphic in D+(A) to a

triangle in K+(R).

Proof. By Corollary 5.2.6, we have an equivalence of categories

F : (Qis+
R)−1K(R)→ D+(A)

Hence f ∈ D+(A)(X•, Y •) admits a representation as a roof s−1r : X• → T • → Y • where
T • ∈ K+(R) and q ∈ Qis+

R. We claim that ∆ is isomorphic in D+(A) to the standard triangle

T • Y • C(r)• T [1]•r

in K+(R). Indeed, consider the diagram

T • Y • C(r)• T [1]•

X• Y • Z• X[1]•

r

q idY • v q[1]

f

The two rows are triangles in D+(A) and the left-hand square is commutative. Hence there
exists a morphism v : C(r)• → Z• completing the diagram to a morphism of triangles. But
q and idY • are isomorphisms whence v is also an isomorphism. Hence the above diagram is
an isomorphism of triangles in D+(A).

Theorem 5.3.4. Let F : A → B be a left-exact functor. Suppose that A has enough right
R-objects and that R is adapted for F . Then RF exists and is unique up to unique natural
isomorphism.

Proof.

Uniqueness: Suppose that (RF, εF ) and (R′F, ε′F ) are two right derived functors of F . Then
there exist unique natural transformations η′ : R′F → RF and η : RF → R′F such that the
diagrams

QB ◦ F+

R′F ◦QA RF ◦QA

ε′F εF

η′QA

QB ◦ F+

RF ◦QA R′F ◦QA

εF ε′F

ηQA

commute. This implies that the natural transformation η ◦ η′ makes the diagram

QB ◦ F+

R′F ◦QA R′F ◦QA

ε′F ε′F

(η◦η′)QA
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commute. But by the universal property of the pair (R′F, ε′F ), such a natural transformation
is unique. It is clear that the identity transformation idR′F◦QA also makes this diagram
commute and so η ◦ η′ = idR′F◦QA . Similarly, η′ ◦ η = idRF◦QA and so η and η′ are mutually
inverse natural isomorphisms.

Construction of RF : Let

Φ : (Qis+
R)−1K+(R)→ D+(A)

be the equivalence of categories provided by Corollary 5.2.6. Then we can always find a
functor

Ψ : D+(A)→ (Qis+
R)−1K+(R)

together with natural isomorphisms

α : id(Qis+R)−1K+(R) → Φ ◦Ψ

β : idD+(A) → Ψ ◦ Φ

Let F : (Qis+
R)−1K+(R)→ K+(B) be the functor given by applying F component-wise. We

claim that F (Qis+
R) ⊆ Qis+

B so that F induces a functor

F : (Qis+
R)−1K+(R)→ D+(B)

Since R is adapted to F , F sends acyclic complexes to acyclic complexes. Recall that a
morphism is a quasi-isomorphism if and only if its mapping cone is acyclic. Hence

f ∈ QisR ⇐⇒ C(f) is acyclic

=⇒ F (C(f)) is acyclic

⇐⇒ C(F (f)) is acyclic (F (C(f)) ∼= C(F (f)))

⇐⇒ F (f) ∈ QisB

Note that this functor is the unique functor making the diagram

K+(R) K+(B)

(Qis+
R)−1K+(R) D+(B)

F+

QR QB

F

commute. Moreover, it is immediate that F is a δ-functor. We then define RF to be the
composition

RF = F ◦ Φ : D+(A)→ D+(B)

RF is a δ-functor: This follows immediately from Lemma 5.3.3.

Construction of the natural transformation εF : Fix a complex X• ∈ ob Com+(A). We need
to construct a family of morphisms (εF )X• : (QB ◦F+)(X•)→ (RF ◦QA)(X•) such that for
every morphism of complexes f ∈ Com+(A)(X•1 , X

•
2 ) we have a commutative diagram

(QB ◦ F+)(X•1 ) (QB ◦ F+)(X•2 )

(RF ◦QA)(X•1 ) (RF ◦QA)(X•2 )

(εF )X•1

(QB◦F+)(f)

(εF )X•2

(RF◦QA)(f)
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To this end, choose a right R-resolution of X•, say X ′• such that X ′• = (Φ◦QA)(X•). Note
that we have an isomorphism of complexes

βX• : X• → (Ψ ◦ Φ)(X•) = Ψ(X ′•)

in D+(A). Then βX• is represented by a diagram X•
s−→ Z•

t←− X ′ with s, t ∈ Qis+
A. By

replacing Z• with an right R-resolution of Z• if necessary, we may assume that Z• ∈
ob Com+(R). Applying the functor F+ : K+(A)→ K+(B) we get a diagram

F+(X•) F+(Z•) F+(X ′•)
F+(s) F+(t)

Since R is adapted to F , F+(t) is a quasi-isomorphism. Hence applying QB we have a
morphism

(QB ◦ F+)(X•) (QB ◦ F+)(Z•) (QB ◦ F+)(X ′•)
(QB◦F+)(s) (QB◦F+)(t)−1

This then defines the desired morphism

(εF )X• : (QB ◦ F+)(X•)→ (QB ◦ F )(X ′•) = (F ◦QR)(X ′•)

= (F ◦ Φ ◦QA)(X•)

= (RF ◦QA)(X)

We must, however, check that (εF )X• is independent of the choice of representative of βX• .
To this end, suppose that X• s1−→ Z•1

t1←− X ′• and X• s2−→ Z•2
t2←− X ′• are two representatives

of βX• . Then we can find Z•3 ∈ K+(R) together with morphisms x : Z•3 → X•, y : Z•3 → X•

and z : Z•3 → Z•2 such that the diagram

Z•1

X• Z•3 X ′•

Z•2

s−1
1 t−1

1
y

x

z
s−1
2 t−1

2

commutes. It is immediate from the fact that x, s−1
1 , s−1

2 ∈ Qis+
A that y and z are also

quasi-isomorphisms. Moreover, symmetry implies that we can assume that y, z ∈ Qis+
R.

Relabelling inverses, we thus have morphisms y : Z•3 → Z•1 and z : Z•3 → Z•2 such that
x = y ◦ s1 = z ◦ s2 and y ◦ t1 = z ◦ t2. It is then immediate that the natural transformation
arising from applying the construction above to the pair (x, y ◦ t1) agrees with the ones
arising from the pairs (s1, t1) and (s2, t2).

Finally, we must verify that the family { (εF )X• | X• ∈ ob Com+(A) } give rise to a nat-
ural transformation εF : QB ◦ F+ → RF ◦QA. Fix a morphism f : X•1 → X•2 in K+(A) and
denote Y •1 = (Φ ◦ QA)(X•1 ) and Y •2 = (Φ ◦ QA)(X•2 ). Since β is a natural transformation,
we have the commutative diagram

X•1 X•2

Ψ(Y •1 ) Ψ(Y •2 )

f

βX•1
βX•2

(Ψ◦Φ)(f)
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We can represent each of the morphisms βX•1 , βX•2 and (Ψ ◦ Φ)(f) by roofs in K+(A). Re-
placing all objects in these roofs with right R-resolutions if necessary, we may assume that
these roofs are in K+(R). Note also that Y •1 , Y •2 ∈ ob K+(R). The fact that R is adapted
to F means that applying the functor F+ : K+(A) → K+(B) to these roofs yields roofs in
K+(B). These roofs then represent morphisms in D+(B) so applying the localisation functor
yields the desired commutative diagram indicating that εF is a natural transformation.

The Universal Property of (RF, εF ): Fix a δ-functor G : D+(A) → D+(B) together with a
natural transformation ε : QB ◦F+ → G ◦QA. We need to exhibit a natural transformation
η : RF → G such that the diagram

QB ◦ F+

RF ◦QA G ◦QA

εF ε

ηQA

commutes. That is to say, given each X• ∈ ob D+(A) = ob K+(A) we need to provide a
morphism of complexes η•X : RFX• → GX• such that for every morphism f : X• → Y • we
have a commutative diagram

RFX• RFY •

GX• GY •

RF (f)

ηX• ηY •

G(f)

To this end, fix X• ∈ ob D+(A). The natural transformation ε provides a morphism εX :
FX → GX in D+(B) for each X ∈ ob K+(A). Moreover, the natural transformation β :
idD+(A) → Ψ◦Φ provides an isomorphism βX• : X• → (Ψ◦Φ)(X•) in D+(A). As before, this
isomorphism admits a representative X• s−→ Z•

t←− X ′• with Z• ∈ ob K+(R) and s, t ∈ Qis+
R.

By naturality of ε we thus have a commutative diagram

F (X•) F (Z•) F (X ′•)

GX• GZ• GX ′•

εX•

(QB◦F+)(s)

εZ• εX′•

(QB◦F+)(t)

(G◦QA)(s) (G◦QA)(t)

in D+(A). Since t is a quasi-isomorphism and R is adapted for F it follows that G ◦QA(t)
and QB ◦ F+(t) are isomorphisms. Inverting these morphisms in the diagram above yields
the diagram

(QB ◦ F+)(X•) (RF ◦QA)(X•)

GX• G((Ψ ◦ Φ)(X•))

(εF )X•

εX• ε(Ψ◦Φ)(X•)

GβX•

(1)
Since βX• is an isomorphism, so is GβX• . We now claim that

ηX• = (GβX•)
−1 ◦ ε(Ψ◦Φ)(X•) : RFX• → GX•

defines the desired unique natural transformation. Firstly, it is clear that we obtain the
desired commutative diagram of natural transformations by the definition of η. To check
that η is indeed a natural transformation, let λ : X• → Y • be a morphism of complexes in
D+(A). We need to check that the diagram
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RFX• RFY •

GX• GY •

ηX•

RF (λ)

ηY •

G(λ)

commutes. Note that, since β is a natural isomorphism, we have a commutative diagram

GX• GY •

G((Ψ ◦ Φ)(X•)) G((Ψ ◦ Φ)(Y •))

G(λ)

(GβX• )−1

G((Ψ◦Φ)(λ))

(GβY • )−1

This implies that

G(λ) ◦ ηX• = G(λ) ◦ (GβX•)
−1 ◦ ε(Ψ◦Φ)(X•) = (GβY •)

−1 ◦G((Ψ ◦ Φ)(λ)) ◦ ε(Ψ◦Φ)(X•)

Now suppose that λ admits a representative roof s−1f : X• → Z• → Y •. Then the naturality
of ε provides us with a commutative diagram

(RF ◦QA)(X•) (RF ◦QA)(Z•) (RF ◦QA)(Y •)

G((Ψ ◦ Φ)(X•)) G((Ψ ◦ Φ)(Z•)) G((Ψ ◦ Φ)(Y •))

ε(Ψ◦Φ)(X•)

(RF◦QA)(s)

ε(Ψ◦Φ)(Z•)

(RF◦QA)(f)

ε(Ψ◦Φ)(Y •)

G((Ψ◦Φ)(s)) G((Ψ◦Φ)(f))

Since s is a quasi-isomorphism, it follows that that the two left-hand horiztonal arrows are
invertible and so we get an induced diagram

(RF ◦QA)(X•) (RF ◦QA)(Y •)

G((Ψ ◦ Φ)(X•)) G((Ψ ◦ Φ)(Y •))

ε(Ψ◦Φ)(X•)

RF (λ)

ε(Ψ◦Φ)(Y •)

G((Ψ◦Φ)(s))

in D+(B). Hence

G(λ) ◦ ηX• = (GβY •)
−1 ◦G((Ψ ◦ Φ)(λ)) ◦ ε(Ψ◦Φ)(X•)

= (GβY •)
−1 ◦ ε(Ψ◦Φ)(Y •) ◦ RF (λ)

= ηY • ◦ RF (λ)

so that η is indeed a natural transformation. It is evident from the construction of η that it
is the unique such natural transformation.

Definition 5.3.5. Let F : A → B be a left-exact functor and suppose that RF exists. We
define the higher (or classical) derived functors of F to be RiF = H i(RF ) for all i ∈ Z.

Proposition 5.3.6. Let F : A → B be a left-exact functor and suppose that A has enough
right R-objects. Then

1. RiF = 0 for all i < 0.

2. R0F = F .
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3. Given a short exact sequence

0 X Y Z 0

in A, there is a corresponding long-exact sequence of higher right-derived functors

0 R0FX R0FY R0FZ

R1FX R1FY R1FZ

RnFX RnFY RnFZ

Proof. Fix an object X ∈ obA and choose a right R resolution f : A[0]→ R• of A. Then
RiF (A) = H i(F (R•)). It is then clear that RiF = 0 for i < 0. Moreover, since f is a quasi-
isomorphism, we have an isomorphism A ∼= ker(R0 → R1). Since F is left-exact, we then
have an isomorphism FA ∼= ker(FR0 → FR1). Taking H0 of both sides of this isomorphism,
we see that FA ∼= R0FA. That this isomorphism is natural in A follows immediately from
the definitions.

Finally, given the short exact sequence in the statement, Proposition 4.6.3 implies that
there exists a triangle

X[0] Y [0] Z[0] X[1]

in D+(A). Since RF is a δ-functor, we then have a triangle

RFX[0] RFY [0] RFZ[0] RFX[1]

in D+(B). Appealing to the long-exact sequence of cohomology, together with Part 1 and 2,
yields the desired long-exact sequence of higher right derived functors.

Proposition 5.3.7. Let A,B and C be abelian categories and F : A → B, G : B → C
left-exact functors. Suppose that R and R′ are collections of objects in A and B respectively
that are adapted to F and G respectively. Assume, moreover, that F (R) ⊆ R′. Then the
right derived functor R(G ◦ F ) exists and the natural morphism of functors

R(G ◦ F )→ RG ◦ RF

is an isomorphism.

Proof. Since F (R) ⊆ R′, it follows that R is adapted to G ◦ F . Hence the right derived
functor R(G◦F ) exists. Note that since RF and RG are δ-functors, so is RG◦RG. R(G◦F )
is moreover a δ-functor and so the universal property of derived functors provides us with a
natural transformation

R(G ◦ F )→ RG ◦ RF

Now for R• ∈ K+(R), this natural transformation is clearly an isomorphism. For the
general case, we can reduce to this case by choosing a right R-resolution X• → R• for each
X ∈ D+(A) which is an isomorphism in D+(A).

Definition 5.3.8. Let F : A → B be a left-exact functor and suppose that RF exists. We
say that X ∈ obA is F -acyclic if RiFX = 0 for all i 6= 0.
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Proposition 5.3.9. Let F : A → B be a left-exact functor such that RF exists and denote
by Z the collection of all F -acyclic objects of A.

1. A collection of objects that are adapted to F exists if and only if A has enough right
Z-objects.

2. If A has enough right Z-objects then Z contains any collection of objects adapted to F
and any subcollection Z′ of Z such that A has enough right Z′-objects is adapted to F .

Proof. First suppose that there exists a collection R of objects of A that is adapted to F .
Fix X ∈ R. Then by the definition of RF , we have that RF (X[0]) is quasi-isomorphic to
(FX)[0]. Hence X ∈ Z and so A has enough right Z-objects.

Now note that the converse of Part 1 and Part 2 will follow if we can prove that, given
a subcollection R ⊆ Z such that A has enough right R-objects, F maps acyclic complexes
in Com+(R) to acyclic complexes.

First suppose that we are given an acylic triple X• represented by 0 → X0 → X1 →
X2 → 0. Then this sequence is a short-exact sequence. Applying F yields a left-exact
sequence

0 FX0 FX1 FX2 0

Since X• ∈ ob Com+(R) ob Com+(Z), it follows that R1FX0 = 0 and so we also have exact-
ness from the right. Hence F (X•) is also ayclic.

Now let X• ∈ ob Com+(R) be a general acyclic complex. We can reduce to the case of
short exact sequences as follows. Set Y 0 = X0 and Y i = im diX . Then we get short-exact
sequences

0 X0 X1 Y 1 0

0 Y 1 X2 Y 2 0

and so on with each Y i ∈ obZ. It then follows that each sequence

0 FY i FX i+1 FY i+1 0

is exact so that FX• is acyclic.

5.4 Injective Resolutions

Throughout this section, let A be an abelian category and I be the collection of injective
objects in A.

Lemma 5.4.1. Let X• ∈ K+(A) be an acyclic complex. If I• ∈ K+(I) then K(A)(X•, I•) =
0

Proof. Fix a morphism u ∈ Com(A)(X•, I•). We need to show that u is null-homotopic.
That is to say, we need to exhibt a morphism k ∈ A−1(X•, I•) such that dIk + kdX = u.
Without loss of generality, we may assume that I i = 0 for all i < 0. If such a k were to exist
then it is evident that ki = 0 for i ≤ 0. We shall construct k by induction on i.

Fix y ∈ im(djX : Xq → Xj+1). Let x ∈ Xj be such that djX(x) = y. Given any other
x′ ∈ Xj such that djX(x′) = y, we necessarily have that there exists w ∈ Xj−1 such that
dj−1
X (w) = x− x′. By hypothesis, we then have that

uj(x)− (dj−1
I ◦ kj)(x) = (kj+1(x) ◦ djX)(x) = kj+1(y) = (kj+1 ◦ djX)(x′)

= uj(x′)− (dj−1
I ◦ kj)(x′)
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This then implies that

uj(x− x′)− (dj−1
I ◦ kj)(x− x′) = (uj ◦ dj−1

X (w)− (dj−1
I ◦ kj ◦ dj−1

X (w))

= (dj−1
I ◦ uj−1)(w)− dj−1

I (uj−1(w) + dj−2
I ◦ kj+1(w))

= 0

Now define a map kj+1 : im djX → Iq by setting

kj+1(y) = uj(x)− (dj−1
I ◦ kj)(x)

Then the above argumentation ensures that kj+1 is independent of the choice of pre-image
of y. Since Ij+1 is injective, there exists a morphism kj+1 such that the diagram

Xj+1

im djX Ij+1

kj+1

kj

commutes. Since X• is acyclic, im djX = ker djX . Hence for y ∈ Xq+1 we have

(kj+1 ◦ djX)(y) = (kj+1 ◦ djX)(y) = uj(y)− (dj−1
I ◦ kj)(y)

which ensures that kj+1 extends the map kj into a homotopy operator up to i = j + 1.

Proposition 5.4.2. Let s ∈ Com+(I)(X•, Y •) be a quasi-isomorphism. Then s is null-
homotopic.

Proof. Consider the standard triangle

X• Y • C(u)• X[1]•u q

in K+(I). Since u is a quasi-isomorphism, C(u) is acyclic. By Lemma 5.4.1, p is thus null-
homotopic. More precisely, there exists k ∈ A−1(C(u)•, X[1]•) such that dY k + kdX[1] =
p. Right-composing this equation with q and noting that k has degree −1, we see that
−dY kq+kdX[1]q = 0. Since q is a morphism of complexes, it then follows that kqdX[1] = dY kq
so that v = kq (which has degree 0) is a morphism of complexes.

Now let qX• be the X• component of q. Then k′ = kqX• is a degree -1 morphism. By
the definition of the differential dC(u)• , we have

dXk
′ = k′dX = vu− idX•

and so vu ∼ idX• . Moreover, we have that v∗u∗ = idH(X•) so that v is a quasi-isomorphism.
Repeating the previous argumentation to v yields a morphism w ∈ C+(I)(X•, Y •) such
that wv ∼ 1Y • . We then see that w ∼ u which implies that 1Y • ∼ uv whence u is null-
homotopic.

Corollary 5.4.3. There is an equivalence of categories (Qis+
I )−1K+(I) ∼= K+(I). If, more-

over, A has enough injectives then we have an equivalence of categories K+(I) ∼= D+(A).

Proof. By Proposition 5.4.2, every quasi-isomorphism is null-homotopic. Hence the locali-
sation functor

K+(I)→ (Qis+
I )−1K+(I)
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is necessarily an equivalence. Moreover, if A has enough injectives then we have a chain of
equivalences

K+(I) ∼= (Qis+
I )−1K+(I) ∼= D+(A)

by Proposition 5.2.6.

Corollary 5.4.4. Let F : A → B be a left-exact functor and suppose that A has enough
injectives. Then the collection I of injective objects in A is adapted to F .

Proof. We need to show that F maps acyclic complexes in Com+(I) to acyclic complexes.
To this end, fix an acyclic complex I• ∈ Com+(I). Then the zero morphism 0 : I• → I• is
necessarily a quasi-isomorphism. By Proposition 5.4.2, it is homotopic to idI• . Hence the
zero morphism of F (I•) is homotopic to idF • . It follows that F (I•) is acyclic as desired.

6 Inner Hom
Throughout this section, A will be an abelian category.

6.1 Definition and Properties

Definition 6.1.1. Let X•, Y • ∈ ob Com(A). Then we define the inner hom of X• and Y •
to be the complex Hom•A(X•, Y •) ∈ Com(AbGrp) given by the data

Homi
A(X•, Y •) =

∏
p∈Z

Com(A)(Xp, Y [i]p)

diX•→Y •(φ) = (dp+iY ◦ φp − (−1)i(φp+1 ◦ dpX))p∈Z

for φ ∈ Homi
A(X•, Y •) where we understand φp to be the pth-component of the morphism

φ. If it is clear from context which category we are discussing, we shall simply write
Hom•(X•, Y •) := Hom•A(X•, Y •).

Given morphisms u ∈ Com(A)(X ′•, X•) and v ∈ Com(A)(Y •, Y ′•), we define a morphism
of complexes

Hom•(u, v) : Hom•(X•, Y •)→ Hom•(X ′•, Y ′•)

by setting for each i ∈ Z and φ = (φp)p∈Z ∈ Homi(X•, Y •)

Homi(u, v)(φ) = ((−1)ivi+p ◦ φp ◦ up)p∈Z

This then defines the bifunctor inner hom

Hom•(−,−) : Com(A)op × Com(A)→ Com(AbGrp)

Lemma 6.1.2. Let X•, Y • ∈ obCom(A) be complexes.

1. The ith cocyles of Hom•(X•, Y •) are precisely Com(A)(X•, Y [i]•).

2. The ith coboundaries of Hom•(X•, Y •) are precisely the null-homotopic morphisms in
Com(A)(X•, Y [i]•).

3. H i(Hom•(X•, Y •)) = K(A)(X•, Y [i]•)

39



Proof.

Part 1: We have that

φ ∈ Zi Hom•(X•, Y •) ⇐⇒ diX•→Y •(φ) = 0

⇐⇒ dp+iY ◦ φp − (−1)i(φp+1 ◦ dpX) = 0 (∀p ∈ Z)
⇐⇒ dp+iY ◦ φp = (−1)i(φp+1 ◦ dpX) (∀p ∈ Z)
⇐⇒ φ ∈ Com(A)(X•, Y [i]•)

Part 2: We have that

φ ∈ Bi Hom•(X•, Y •) ⇐⇒ φ ∈ im di−1
X•→Y •

⇐⇒ there exists ψ ∈ Homi−1(X•, Y •) such that

φp = dp+i−1
Y ◦ ψp − (−1)i(ψp+1 ◦ dpX) (∀p ∈ Z)

⇐⇒ φ is homotopic to 0 in Com(A)(X•, Y [i]•)

Part 3: This follows immediately from Part 1 and 2.

Lemma 6.1.3. Let u : X ′• → X• and v : Y • → Y ′• be morphisms of complexes in Com(A).
Consider the complex

H• = Hom•AbGrp(HomA(X•, Y •),HomA(X ′•, Y ′•))

in Com(AbGrp). Then

dH(Hom•A(u, v)) = Hom•A(dX′•→X•(u), v) + Hom•A(u, dY •→Y ′•(v))

Proof. In this proof we omit signs and indices in favour of clarity. On one hand we have
that

dH(Hom•(u, v))(φ) = (dX′•→Y ′• ◦ Hom•(u, v))(φ) + (Hom•(u, v) ◦ dX•→Y •)(φ)

= dX′•→Y ′•(v ◦ φ ◦ u) + (v ◦ (dX•→Y •(φ)) ◦ u)

= dY ′ ◦ v ◦ φ ◦ u+ v ◦ φ ◦ u ◦ dX′
+ v ◦ dY ◦ φ ◦ u+ v ◦ φ ◦ dX ◦ u

On the other hand, Hom•A(dX′•→X•(u), v)(φ) + Hom•A(u, dY •→Y ′•(v))(φ) is given by

v ◦ φ ◦ dX′•→X•(u) + dY •→Y ′•(v) ◦ φ ◦ u = v ◦ φ ◦ dX ◦ u
+ v ◦ φ ◦ u ◦ dX′
+ dY ′ ◦ v ◦ φ ◦ u
+ v ◦ dY ◦ φ ◦ u

These two expressions evidently coincide whence the Lemma.

Proposition 6.1.4. Hom•(−,−) is an additive functor that preserves homotopy equiva-
lences and thus descends to an additive a functor

Hom•(−,−) : K(A)op × K(A)→ K(AbGrp)
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Proof. That Hom•(−,−) is additive follows immediately from the definition. Suppose that
v : Y • → Y ′• is null-homotopic. By Lemma 6.1.2, v is a 0th coboundary in Hom•(Y •, Y ′•).
Hence there exists z ∈ Hom−1(Y •, Y ′•) such that di−1

Y •→Y ′•(z) = v. Then by Lemma 6.1.3 we
have

Hom•A(idX′• , v) = HomA(idX′• , dY •→Y ′•(z)) = dH(Hom•A(u, z))− Hom•A(dX′•→X•(idX′•), z)

so that Hom•A(idX′• , v) is null-homotopic. A similar argument shows that Hom•(−,−) pre-
serves homotopy equivalences in the first argument.

Lemma 6.1.5. Let W • ∈ Com(A) be a complex and u ∈ Com(A)(X•, Y •) a morphism.
Denote

u = Hom•(idW • , u) : Hom•(W •, X•)→ Hom•(W •, Y •)

u = Hom•(u, idW •) : Hom•(Y •,W •)→ Hom•(X•,W •)

Then C(u)• = Hom•(W •, C(u)•) and (C(u)•)op = Hom•(C(u)•,W •).

Proof. By definition, we have that

C(u)n = Homn+1(W •, X•)⊕ Homn(W •, Y •)

and, on the other hand,

Homn(W •, C(u)•) = Homn(W •, X[1]• ⊕ Y •) = Homn(W •, X[1]•)⊕ Homn(W •, Y •)

= Homn+1(W •, X•)⊕ Homn(W •, Y •)

We thus have a canonical isomorphism πn : Homn(W •, C(u)•)→ C(u)n given by

πn : Homn(W •, X[1]• ⊕ Y •)→ Homn+1(W •, X•)⊕ Homn(W •, Y •)

φ 7→ (π1 ◦ φ, π2 ◦ φ)

where π1 and π2 are the canonical projections onto the components of X[1]•⊕ Y •. That πn
is a morphism of complexes follows immediately from the fact that π1 and π2 are morphisms
of complexes. The argumentation for the first argument of inner hom follows the same
principle.

6.2 Derived Functor of Inner Hom

Proposition 6.2.1. The functor

Hom•(−,−) : K(A)op × K(A)→ K(AbGrp)

is a bi-δ-functor.

Proof. We show that, for fixed W • ∈ ob K(A), the functor Hom•(W •,−) is a δ-functor. The
argumentation for the first argument follows the same principle.

First observe that for all X• ∈ K(A) we have

Hom•(W •, X[1]•) = Hom•(W •, X•)[1]

It is then immediate from Lemma 6.1.5 that Hom•(W •,−) transforms distinguished triangles
in K(A) to distinguished triangles in K(AbGrp).
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Definition 6.2.2. Suppose that A has enough injectives and let I be the collection of
injective objects in A. Given an object X• ∈ ob K(A), the functor Hom•(X•,−) is a δ-
functor. By Corollary 5.4.4, I is adapted to Hom•(X•,−) (considered as a functor restricted
to K+(A)) so it admits a right derived functor which we denote

R2 Hom•(X•,−) : D+(A)→ D(AbGrp)

to signify we are deriving the functor in the second argument. This induces a bifunctor

R2 Hom•(−,−) : K(A)op × D+(A)→ D(AbGrp)

Given Y • ∈ ob D+(A), we then get a functor

R2 Hom•(−, Y •) : K(A)op → D(AbGrp)

Now suppose that s : X ′• → X• is a quasi-isomorphism and I• an injective resolution of Y •.
Then R2 Hom•(s, Y •) = Hom•(s, I•) and the morphism

Hom•(s, I•) : Hom•(X•, I•)→ Hom•(X ′•, I•)

is a quasi-isomorphism since I is adapted to Hom•(−, I•) and sends acyclic complexes
to acyclic complexes. Hence by the universal property of the localisation functor Qop

A :
K(A)op → D(A)op, we obtain a unique functor

R1R2 Hom•(−, Y •) : D(A)op → D(AbGrp)

which induces a bifunctor

R1R2 Hom•(−,−) : D(A)op × D+(A)→ D(AbGrp)

Dually, if A has enough projectives, we can construct a unique functor

R2R1 Hom•(−,−) : D−(A)op × D(A)→ D(AbGrp)

Proposition 6.2.3. Suppose that A has enough injectives and projectives. Then the functors

R1R2 Hom•(−,−) : D−(A)op × D+(A)→ D(AbGrp)

R2R1 Hom•(−,−) : D−(A)op × D+(A)→ D(AbGrp)

are unique up to a unique canonical natural isomorphism.

Proof. Let ε2 and ε1 be the natural transformations associated to the derived functors
R2 Hom•(X•,−) and R1 Hom(−, Y •). These induces natural transformations

ε2 : QA ◦ Hom•(−,−)→ R1R2 Hom•(−,−) ◦ (Qop
A ×QA)

ε1 : QA ◦ Hom•(−,−)→ R2R1 Hom•(−,−) ◦ (Qop
A ×QA)

By the universal property of derived functors, there exists unique natural transformations

η2 : R1R2 Hom•(−,−)→ R2R1 Hom•(−,−)

η1 : R2R1 Hom•(−,−)→ R1R2 Hom•(−,−)
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such that

(η2)(Qop
A ×QA) ◦ ε2 = ε1

(η1)(Qop
A ×QA) ◦ ε1 = ε2

But the universal property of derived functors then implies that

η1 ◦ η2 = idR1R2 Hom•(−,−)

η2 ◦ η1 = idR2R1 Hom•(−,−)

so that η1 and η2 are mutually inverse natural transformations.

Remark. From now on, we shall simply write R Hom•(−,−) to denote the derived functors
of inner hom. In the case thatA has enough injectives and projectives, the above Proposition
ensures that this notation is not ambiguous.

Definition 6.2.4. Suppose that A has enough injectives (or projectives or both) and let
X• ∈ ob D(A)op and Y • ∈ ob D+(A). We define the nth Ext group of X• and Y • to be

Extn(X•, Y •) = Rn Hom•(X•, Y •)

Proposition 6.2.5. Suppose that A has enough injectives (or projectives or both) and let
X• ∈ ob D(A)op and Y • ∈ ob D+(A). Then

Extn(X•, Y •) = D(A)(X•, Y [n]•)

Proof. Fix an injective resolution I• of Y •. Then

D(A)(X•, Y [n]•) = D(A)(X•, I[n]•)

We first claim that

D(A)(X•, I•) = K(A)(X•, I•)

To this end, fix a morphism α ∈ D(A)(X•, I•) represented by a roof s−1f : X• → Z• → I•.
Since I• is bounded from below, a similar argument to the proof of Proposition 4.5.5 allows
us to assume that Z• is bounded below. Replacing Z• with an injective resolution of Z• if
necessary, we may assume that Z• is injective. But then Corollary 5.4.3 implies that s is an
isomorphism in K(A). Hence the map sending α to s−1f defines the desired isomorphism.

In light of this, we have that

D(A)(X•, Y [n]•) = D(A)(X•, I[n]•) = K(A)(X•, I[n]•)

On the other hand, Part 3 of Lemma 6.1.2 yields

D(A)(X•, Y [n]•) = K(A)(X•, I[n]•) = Hn(Hom•(X•, I•))

But by the definition of the right derived functor, we have

D(A)(X•, Y [n]•) = Hn(Hom•(X•, I•)) = Rn Hom(X•, Y •)
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7 Tensor Abelian Categories

7.1 Definitions and Properties

Definition 7.1.1. Let C be a category. We say that C is monoidal if it comes equipped
with the following data

1. A bifunctor ⊗ : C × C → C called the tensor functor.

2. A distinguished object I ∈ ob C called the unit.

3. A natural isomorphism α, called the associator, with components αX,Y,Z : (X⊗Y )⊗
Z ∼= X ⊗ (Y ⊗ Z).

4. Natural isomorphisms λ and ρ, called the left and right unitor respectively, with
components λX : I ⊗X ∼= X and ρX : X ∼= X ⊗ I.

such that the following diagrams commute

((W ⊗X)⊗ Y )⊗ Z (W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)

(W ⊗X)⊗ (Y ⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

αW,X,Y ⊗idZ

αW⊗X,Y,Z

αW,X⊗Y,Z

idW⊗αX,Y,Z
αW,X,Y⊗Z

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y
ρX⊗idY

αX,I,Y

idX⊗λY

Moreover, we say that C is symmetric if there exists a natural isomorphism γ, called the
braiding, with components γX,Y : X⊗Y → Y ⊗X such that λX ◦γX,I = ρX , γY,X ◦γX,Y =
idX⊗Y and such that the diagram

(X ⊗ Y )⊗ Z (Y ⊗X)⊗ Z

X ⊗ (Y ⊗ Z) Y ⊗ (X ⊗ Z)

(Y ⊗ Z)⊗X Y ⊗ (Z ⊗X)

γX,Y ⊗idZ

αX,Y,Z αY,X,Z

γX,Y⊗Z γY,X⊗Z

αY,Z,X

commutes.

Definition 7.1.2. Let A be an additive category. We say that A is a tensor category if it
is a symmetric monoidal category whose tensor functor is additive in both arguments. If,
in addition, A is abelian then we require that its tensor functor preserves finite colimits in
both arguments.

Example 7.1.3. Let R be a commutative ring with unit. Then ModR is a tensor abelian
category. Moreover, if X is a topological space then the category of ModR-valued sheaves
on X is a tensor abelian category.

From now on, A will be an abelian tensor category.
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Definition 7.1.4. We say that F ∈ obA is flat if the functor −⊗ F is exact.

Proposition 7.1.5. Let F the collection of all flat objects in A. Then F is admissible.

Proof. It is immediate that any object isomorphic to a flat object is necessarily flat. The
fact that the direct sum of flat modules is flat follows from the fact that the tensor functor
is additive.

Definition 7.1.6. Let X•, Y • ∈ ob Com(A). Then we define the tensor product of X•
and Y • to be the complex X• ⊗ Y • ∈ Com(A) given by the data

(X• ⊗ Y •)i =
⊕
p+q=i

Xp ⊗ Y q

(diX•⊗Y •)p+q=i = (dpX ⊗ idqY • + (−1)p(idpX• ⊗ d
q
Y •))p+q=i

Given morphisms u ∈ Com(A)(X•, X ′•) and v ∈ Com(A)(Y •, Y ′•), we define a morphism
of complexes

u⊗ v : X• ⊗ Y • → X ′• ⊗ Y ′•

componentwise. This then defines the bifunctor tensor product

⊗ : Com(A)× Com(A)→ Com(A)

Proposition 7.1.7. Let I be the unit of A. Then the tensor product of complexes, together
with I[0] acting as the unit, endows Com(A) with the structure of an abelian tensor category.

Proof. We omit this simple yet tedious proof. Each axiom of a symmetric monoidal category
follows from the corresponding axiom for A.

7.2 Derived Functor of ⊗
Proposition 7.2.1. ⊗ : Com(A) → Com(A) preserves homotopy equivalences and thus
descends to an additive functor

⊗ : K(A)× K(A)→ K(A)

which endows K(A) with the stucture of an abelian tensor category.

Proof. It suffices to show that ⊗ preserves homotopy equivalence in the first argument,
the argumentation for the second argument follows similarly. Let u : X• → X ′• be a
null-homotopic morphism. We need to show that u ⊗ idY • is null-homotopic. Fix k ∈
A−1(X•, X ′•) such that u = dY k + kdX . We claim that k ⊗ idY • is a homotopy operator
from u⊗ idY • to 0. Indeed, we have

up ⊗ idqY • = (dp−1
X′ k

p + kp+1dpX)⊗ idqY •

= dp−1
X′ k

p ⊗ idqY • + kp+1dpX ⊗ idqY •

= dp−1
X′ k

p ⊗ idqY • + (−1)p−1(kp ⊗ dqY )− (−1)p−1(kp ⊗ dqY ) + kp+1dpX ⊗ idqY •

= (dp−1
X′ ⊗ idqY • + (−1)p(idp−1

X′• ⊗ d
q
Y ))(kp ⊗ idqY •)

+ (−1)p(kp ⊗ dqY ) + kp+1dpX ⊗ idqY •

= (di−1
X′•⊗Y •)p,q(k

p ⊗ idqY •) + (−1)p(kp ⊗ idq+1
Y • )(idpX• ⊗ d

q
Y ) + kp+1dpX ⊗ idqY •

= (di−1
X′•⊗Y •)p,q(k

p ⊗ idqY •) + (−1)p(kp+1 ⊗ idqY •)(id
p
X• ⊗ d

q
Y ) + kp+1dpX ⊗ idqY •

= (di−1
X′•⊗Y •)p,q(k

p ⊗ idqY •) + (kp+1 ⊗ idqY •)(d
i
X•⊗Y •)p,q

as required.
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Lemma 7.2.2. Let Z• ∈ ob Com(A) be a complex and u ∈ Com(A)(X•, Y •) a morphism.
Then

C(u⊗ idZ•) = C(u)• ⊗ Z•

Proof. First note that we have equalities of functors T (Z•⊗−) = Z•⊗T (−) and T (−⊗Z•) =
T (−)⊗ Z•. Hence

C(u⊗ idZ•)
• = T (X• ⊗ Z•)⊕ (Y • ⊗ Z•)

= (X[1]• ⊕ Y •)⊗ Z•

= C(u)• ⊗ Z•

so that the two complexes are componentwise isomorphic. It follows immediately that this
is in fact a morphism of complexes hence the complexes are isomorphic.

Proposition 7.2.3. ⊗ : K(A)× K(A)→ K(A) is a bi-δ-functor.

Proof. It is clear that ⊗ commutes with shift functors. The fact that ⊗ sends triangles to
triangles follows from Lemma 7.2.2.

Theorem 7.2.4. Suppose that A has enough left flat objects and let F be the collection of
flat objects in A. Then for all Y • ∈ ob K−(A), F is adapted to −⊗Y •. Dually, F is adapted
to X• ⊗−.

Proof. Proof omitted. See [Bor+87, Lemma I.11.5] and [Har66, Lemma I.4.1].

Definition 7.2.5. Suppose that A has enough left flat objects and let F be the collection
of flat objects in A. Given an object Y • ∈ ob K(A), the functor −⊗ Y • is a δ-functor. By
Theorem 7.2.4, F is adapted to − ⊗ Y • (considered as a functor restricted to K−(A)) so it
admits a left-derived functor which we denote

L1(−⊗ Y •) : D−(A)→ D(A)

to signifiy we are deriving the functor in the first argument. This induces a bifunctor

L1(−⊗−) : D−(A)× K(A)→ D(A)

Given X• ∈ ob D−(A), we then get a functor

L1(X• ⊗−) : K(A)→ D(A)

Now suppose that s : X• → X ′• is a quasi-isomorphism and F • a left flat resolution of Y •.
Then L1(s, Y •) = s⊗ F • and the morphism

s⊗ F • : X• ⊗ Y • → X ′• ⊗ Y •

is a quasi-isomorphism since F is adapted to −⊗ Y • and sends acyclic complexes to acyclic
complexes. hence by the universal property of the localisation functor QA : K(A)→ D(A),
we obtain a unique functor

L2L1(−⊗ Y •) : D−(A)→ D(A)

which induces a bifunctor

L2L1(−⊗−) : D−(A)× D(A)→ D(A)

Dually, we can construct a unique functor

L1L2(−⊗−) : D(A)× D−(A)→ D(A)
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Proposition 7.2.6. Suppose that A has enough left flat objects. Then the functors

L2L1(−⊗−) : D−(A)× D−(A)→ D(A)

L1L2(−⊗−) : D−(A)× D−(A)→ D(A)

are unique up to unique canonical isomorphism.

Proof. This follows the exact same proof as for Proposition 6.2.3.

Remark. From now on, we shall simply write
L
⊗ to denote the derived functors of ⊗. The

above Proposition ensures that this notation is not ambiguous.

Proposition 7.2.7. Suppose that A has enough left flat objects. Then
L
⊗ endows D−(A)

with the structure of an abelian tensor category.

Proof. We omit this this simple yet tedious proof. Each axiom of a symmetric monoidal cat-
egory follows from the corresponding axiom for K−(A) together with the universal property

of
L
⊗.

Definition 7.2.8. Suppose that A has enough left flat objects and let X•, Y • ∈ ob D−(A).
We define the nth Tor object in A to be

Torn(X•, Y •) = H−n(X•
L
⊗Y •)

8 Spectral Sequences
Throughout this section, A will be an abelian category.

8.1 Definitions

Definition 8.1.1. Let A be an abelian category and X ∈ obA an object. A descending
filtration of X is a chain of subobjects

· · · ⊆ F p+1(X) ⊆ F p(X) ⊆ F p−1(X) ⊆ . . .

Should they exist, we write

inf
p
F p(X) =

⋂
p

F p(X)

sup
p
F p(X) =

⋃
p

F p(X)

We say that F p is separated if infp F
p(X) = 0 and coseparated if supp F

p(X) = X.
Moreover, we say that F p is discrete if there exists p ∈ Z such that F p(X) = 0 and
codiscrete if there exists p ∈ Z such that F p(X) = X.

Definition 8.1.2. We define a bigraded collection in A to be a collection of objects
{Ep,q }p,q∈Z. A bigraded differential of bidegree (s, t) d on a bigraded collection is
a collection of morphisms dp,q : Ep,q → Ep+s,q+t such that the composition of any two
consecutive differentials is the zero map. A differential bigraded collection is a choice
of bigraded collection together with a bigraded differential which we shall often write as
(Ep,q, dp,q)p,q∈Z or just (E, d).
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Definition 8.1.3. Let (E, d) be a differential bigraded collection. Given s ∈ Z, we say
that (E, d) is cohomological of degree s if d is of bidegree (s, 1 − s). We define the
cohomology of a cohomological differential bigraded collection to be

Hp,q(E, d) = ker(dp,q)/ im dp−s,q+s−1

Remark. We can also make the dual definition which insists that a homological differential
bigraded collection (E, d) has bidegree (−s, s− 1).

Definition 8.1.4. Let a ≥ 0 be an integer. We define a cohomology book E starting
at page a to be a structure consisting of the following data

1. For each r ≥ a a cohomological differential bigraded collection (Er, dr) of degree r
called the rth page of E.

2. For each r ≥ a an isomorphism called the rth animation

αp,qr : Hp,q(Er, dr)→ Ep,q
r+1

For notational convenience, we will often write Zr+1(Ep,q
r ) = ker(dp,qr ) and Br+1(Ep,q

r ) =
im(dp−r,q+r−1

r ). Moreover, we will usually suppress this isomorphism and assume that
the objects are simply equal.

Remark. The naming of a cohomology book suggests a useful visual aid in order to keep
track of the various pieces of data. A cohomology book can be viewed as a (physical) book
whose every page is a Z2 coordinate grid. On the (p, q)th coordinate of the rth page is placed
the object Ep,q

r . The various objects on the rth page are connected via the differential.
Applying the collection of animations αr to the rth page is akin to turning the page of
the book - thereby ‘animating’ it in the style of a flip book. The following animation4

encapsulates this visualisation

4Note that this animation (probably) only works in Adobe reader and similar software
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Lemma 8.1.5. Let A be an abelian category. Consider the diagram

A′ A

B′ B

α

β

γ

where γ is monic. Then this diagram can be completed to a pullback if and only if α is the
kernel of coker(γ) ◦ β.

Proof. First suppose that the diagram completes to a pullback

A′ A

B′ B

α

δ β

γ

We need to show that α equalises coker(γ) ◦ β with 0 and is universal amongst such mor-
phisms. Since the square is a pullback, we have that

coker(γ) ◦ β ◦ α = coker(γ) ◦ γ ◦ δ = 0

by the definition of coker(γ). We must now show that α satisfies the universal property of
a kernel. Suppose that α′ : Z → A also equalises coker(γ) ◦ β with 0. Then, clearly, β ◦ α′
equalises coker(γ) with 0. Hence β ◦ α′ factors through ker(coker(γ)). But this is just γ
since, in any abelian category, every monomorphism is the cokernel of its kernel. We thus
see that there exists some l : Z → B′ such that γ ◦ l = β ◦ α′. By the universal property
of the pullback there thus exists a unique k : Z → A′ such that α′ = α ◦ k. This gives the
desired unique factorisation in the universal property of the kernel.

Conversely, suppose that α is the kernel of coker(γ) ◦ β. We need to show that there
exists some δ : A′ → B′ completing the square to a pullback. As before, we see that β ◦ α
equalises coker(γ) with 0 and so it necessarily factors through ker(coker(γ)) = γ. There
thus exists some δ : A′ → B′ such that γ ◦ δ = β ◦ α. We claim that the pair (δ, α) satisfies
the universal property of a pullback. To this end, suppose that σ : Z → A and τ : Z → B′

are such that β ◦ σ = γ ◦ τ . We need to exhibit a unique k : Z → A′ such that σ = α ◦ k
and τ = δ ◦ k.

Observe that

β ◦ σ = γ ◦ τ =⇒ coker(γ) ◦ β ◦ σ = coker(γ) ◦ γ ◦ τ = 0

By the universal property of α = ker(coker(γ) ◦ β), there exists a unique k : Z → A′ such
that σ = α ◦ k. Note now that

γ ◦ δ = β ◦ α =⇒ γ ◦ δ ◦ k = β ◦ α ◦ k =⇒ γ ◦ δ ◦ k = β ◦ σ = γ ◦ τ

Since γ is monic it follows that δ ◦ k = τ and so the the pair (δ, α) is universal.

Definition 8.1.6. Let E be a cohomology book starting at page a ≥ 0. Given r ≥ a and
k ≥ r + 11, we recursively define subobjects Zp,q

k (Ep,q
r ) and Bp,q

k (Ep,q
r ) of Ep,q

r as follows.
Note that we have a relation

Ep,q
r Ep,q

r /Br+1(Ep,q
r ) Zr+1(Ep,q

r )/Br+1(Ep,q
r ) Ep,q

r+1

αp,qr
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We define Zp,q
k (Ep,q

r ) and Bp,q
k (Ep,q

r ) to be the subobjects of Ep,q
r corresponding to the inverse

images of Zp,q
k (Ep,q

r+1) and Bp,q
k (Ep,q

r+1) as subobjects of Ep,q
r+1 respectively. Clearly, B

p,q
k (Ep,q

r ) ⊆
Zp,q
k (Ep,q

r ) so Lemma 8.1.5 allows us to form the pullback

Bk(E
p,q
r+1) Zk(E

p,q
r )

Bk(E
p,q
r+1) Zk(E

p,q
r+1)

where the horizontal maps are monic and, since epimorphisms are stable under pullback in an
abelian category, the vertical maps are epimorphisms. We thus have induced isomorphisms
on the cokernels

Zk(E
p,q
r )/Bk(E

p,q
r ) ∼= Zk(E

p,q
r+1)/Bk(E

p,q
r+1)

for each k ≥ r + 1 which recursively provides us with canonical isomorphisms

Zk(E
p,q
r )/Bk(E

p,q
r ) ∼= Ep,q

k

for all k ≥ r + 1. Setting Br(E
p,q
r ) = 0 and Zr(E

p,q
r ) = Ep,q

r , we thus have a chain of
inclusions

0 = Br(E
p,q
r ) ⊆ Br+1(Ep,q

r ) ⊆ · · · ⊆ Zr+1(Ep,q
r ) ⊆ Zr(E

p,q
r ) = Ep,q

r

Definition 8.1.7. Let E be a cohomology book starting at page a ≥ 0 in A. We say that
E is a spectral sequence if it comes equipped with the following data

1. Subobjects Z∞(Ep,q
a ) and B∞(Ep,q

a ) of Ep,q
a such that for all k ≥ a we have Zk(Ep,q

a ) ⊆
Z∞(Ep,q

r ) and Bk(E
p,q
a ) ⊆ B∞(Ep,q

r ). We set Ep,q
∞ = Z∞(Ep,q

a )/B∞(Ep,q
a ) and call the

bigraded collection {Ep,q
∞ } the page at infinity of E.

2. A collection of objects {En }n∈Z called the limit of E such that each En comes
equipped with a descending filtration {F p(En) }p∈Z. We let

grp(E
n) = F p(En)/F p+1(En)

be the pth graded component of En.

3. For each p, q ∈ Z an isomorphism

βp,q : Ep,q
∞ → grp(E

p+q)

We will often write Ep,q
r ⇒r E

p+q to indicate that the spectral sequence E converges to the
limit En.

Definition 8.1.8. Let E be a spectral sequence starting at page a ≥ 0 in A. We say that
E is weakly convergent if B∞(Ep,q

a ) = supk Bk(E
p,q
a ) and Z∞ = infk Zk(E

p,q
k ) (assuming

these exist). If E is weakly convergent then we say it is regular if

1. For each p, q ∈ Z the descending sequence {Zk(Ep,q
a ) }k≥a stabilises. In other words,

Zk(E
p,q
a ) = Zk+1(Ep,q

a ) for sufficiently large k. In this case we then have that Z∞(Ep,q
a ) =

Zk(E
p,q
a ).

2. For each n ∈ Z, the filtration {F p(En) }p∈Z is discrete and coseparated.
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We say that E is coregular if it is weakly convergent and

1. For each p, q ∈ Z the ascending sequence {Bk(E
p,q
a ) }k≥a stabilises. In this case we

then have that B∞(Ep,q
a ) = Bk(E

p,q
a ).

2. For each n ∈ Z, the filtration {F p(En) }p∈Z is codiscrete.

Finally, we say that E is biregular if it is both regular and coregular.

Proposition 8.1.9. Let E be a biregular spectral sequence starting at page a ≥ 0 in A. If
for some r ≥ a and p, q ∈ Z we have that Ep,q

r = 0 then Ep,q
∞ = 0.

Proof. This is immediate from the definitions.

Definition 8.1.10. Let E be a biregular spectral sequence starting at page a ≥ 0 in A. We
say that E degenerates on page r ≥ a if for all p, q ∈ Z we have that dp,qr = 0.

8.2 The Spectral Sequence of a Filtered Complex

Definition 8.2.1. Let X• ∈ ob Com(A) be a complex. A descending filtration on X• is
a collection of descending filtrations {F p(Xn) }p∈Z for each n ∈ Z such that dX(F p(Xn)) ⊆
F p(Xn+1).

Let X• be a filtered complex. Before we continue we present an informal discussion on
how the filtration gives us the notion of ‘approximate cocycles’. Fix i ∈ Z. Given an element
x ∈ X i, let p ∈ Z be an integer such that x ∈ F p(X i). Then the following philosophy applies:

The larger the magnitude of p, the closer that x is to 0

Under the guise of this philosophy, let r ≥ 0 be an integer such that diX(x) ∈ F p+r(X i+1).
Then the larger the magnitude of r, the closer that x is to being a cocycle. We formalise
this philosophy in the following definition:

Definition 8.2.2. Let X• be a filtered complex. Given r ≥ 0 and p, q ∈ Z we define a
subobject of F p(Xp+q) by

Ap,qr = F p(Xp+q) ∩ (dp+qX )−1(F p+r(Xp+q+1))

Note that when r = 0 we have that Ap,q0 = F p(Xp+q) so that we have a chain of subobjects

F p(Xp+q) ∩ ker(dp+qX ) ⊆ · · · ⊆ Ap,qr+1 ⊆ Ap,qr ⊆ · · · ⊆ Ap,q1 ⊆ Ap,q0 = F p(Xp+q)

Note that dp+q−1
X (Ap−r+1,q+r−2

r−1 ) ⊆ F p+1(Xp+q) and we define Äp,qr to be the image under this
inclusion. We now define, for each r ≥ 0 and p, q ≥ 0 the approximate (r, p, q)-cocycles
and (r, p, q)-coboundaries to be the quotient objects

Zp,q
r =

Ap,qr + F p+1(Xp+q)

F p+1(Xp+q)

Bp,q
r =

Äp,qr + F p+1(Xp+q)

F p+1(Xp+q)

Since Zp,q
r and Bp,q

r are canonically subobjects of F p(Xp+q)/F p+1(Xp+q) and Bp+q
r ⊆ Zp,q

r ,
we can define the approximate (r, p, q)-cohomology object to be the quotient object

Ep,q
r = Zp,q

r �Bp,q
r

∼=
Ap,qr + F p+1(Xp+q)

Äp,qr + F p+1(Xp+q)
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Remark. Suppose that X• is filtered with the trivial filtration:

F i(X•) =

{
X• if i ≤ 0
0 if i > 0

Then we have that

Z0,q
1 =

A0,q
1 + F 1(Xq)

F 1(Xq)
= F 0(Xq) ∩ (dqX)−1(F 1(Xq+1)) = Xq ∩ (dqX)−1(0) = ker(dqX)

B0,q
1 =

Ä0,q
1 + F 1(Xq)

F 1(Xq)
= dq−1

X (F 0(Xq−1) ∩ (dq−1
X )−1(Xq) = dq−1

X (Xq−1 ∩ (dq−1
X )−1(Xq))

= im(dq−1
X )

so that we recover the usual cohomology groups of X•.

Lemma 8.2.3. Let X ∈ obA be an object and Y, F two subobject of X. Then the canonical
morphism

F → F + Y → (F + Y )/Y

is an epimorphism.

Proof. By definition, F + Y is the image of the canonical map F ⊕ Y → X. We can,
moreover, realise the projection πF : F ⊕ Y → F as coker(Y → F ⊕ Y ). It is clear that
the composition F ⊕ Y → F + Y → (F + Y )/Y also coequalises the map Y → F ⊕ Y with
0 so, by the universal property of the cokernel πF , there exists a unique morphism making
the diagram

F ⊕ Y F + Y

F (F + Y )/Y

commute. Since all the non-dotted morphisms are epimorphisms, the dotted morphism is
necessarily also an epimorphism. Note that the morphism of the Lemma also makes this
diagram commute so it must coincide with the dotted morphism.

Lemma 8.2.4. Let X• be a filtered complex. For each r ≥ 0 and p, q ∈ Z, the differential dX
induces a morphism dp,qr : Ap,qr → Ap+r,q−r+1

r such that dp+r,q−r+1
r ◦ dp,qr = 0 and the diagram

Ap,qr Ap+r,q−r+1
r

Xp,q Xp+q+1

dp,qr

dp+qX

commutes. Moreover, this morphism induces a unique morphism dp,qr : Ep,q
r → Ep+r,q−r+1

r

such that dp+r,q−r+1
r ◦ dp,qr and the diagram

Ap,qr Ap+r,q−r+1
r

Ep,q
r Ep+q,q−r+1

r

dp,qr

dp,qr
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commutes where Ap,qr → Ep,q
r is the canonical epimorphism arising from Lemma 8.2.3.

Proof. We define dp,qr : Ap,qr → Ap+r,q−r+1
r to be the restriction of the morphism dp+qX to the

subobject Ap,qr . Once we check that the image of dp,qr is contained in Ap+r,q−r+1
r then all

other assertions concerning this morphism are evident. We have that

dp,qX (Ap,qr ) ⊆ dp,qX (F p(Xp+q)) ∩ F p+r(Xp+q+1)

and Ap+r,q−r+1
r = F p+r(Xp+q+1) ∩ (dp+q+1

X )−1(F p+2r(Xp+q+2)). Since dp+q+1
X ◦ dp,qX = 0, it is

clear that dp,qX (F p(Xp+q)) ⊆ (dp+q+1
X )−1(F p+2r(Xp+q+2)) so we get the desired inclusion.

We now define dp,qr : Ep,q
r → Ep+r,q−r+1

r to be the canonical morphism induced on the
factor groups by dp,qX . This is not yet well-defined - we must first check that the dp,qr is
independent of the choice of approximate coycle representing an approximate cohomology
class in Ep,q

r . It suffices to show that

dp,qr (Äp,qr + F p+1(Xp+q)) ⊆ Äp+r,q−r+1
r + F p+r+1(Xp+q+1)

By the definition of Äp,qr , it suffices to show the inclusion for dp+qX (F p+1(Xp+q)). Note that

Äp+r,q−r+1
r = dp+q−1

X (Ap+1,q−1
r−1 ) = dp+qX (F p+1(Xp+q) ∩ (dp+qX )−1(F p+r+1(Xp+q+1))

and so this inclusion is clear. The fact that the second diagram commutes is now obvious
by the construction of dp,qr . The fact that dp,qr is a differential then follows immediately from
the commutativity of this diagram.

Lemma 8.2.5. Let X• be a filtered complex. Then for all r ≥ 0 and p, q ∈ Z we have

Zp,q
r+1 := ker(dp,qr ) ∼=

Ap,qr+1 + F p+1(Xp+q)

Äp,qr + F p+1(Xp+q)

Bp,q
r+1 := im(dp−r,q+r−1

r ) ∼=
Äp,qr+1 + F p+1(Xp+q)

Äp,qr + F p+1(Xp+q)

thereby inducing canonical isomorphisms

αp,qr : Z
p,q
r+1�Bp,q

r+1
→ Ep,q

r+1

Proof. Observe that, by an isomorphism theorem, we have an isomorphism

Ep,q
r =

Ap,qr + F p+1(Xp+q)

Äp,qr + F p+1(Xp+q)
∼=

Ap,qr
Ap,qr ∩ (Äp,qr + F p+1(Xp+q))

=
Ap,qr

Äp,qr + Ap+1,q−1
r−1

And by a similar argument, we have

Ap,qr+1 + F p+1(Xp+q)

Äp,qr + F p+1(Xp+q)
∼=

Ap,qr+1

Äp,qr + Ap+1,q−1
r

=
Ap,qr+1

Äp,qr + Ap,qr+1 ∩ A
p+1,q−1
r−1

∼=
Ap,qr+1 + Ap+1,q−1

r−1

Äp,qr + Ap+1,q−1
r−1

so it suffices to show that the last quotient object in the above chain of isomorphisms is
ker(dp,qr ). To this end, fix a ∈ Ap,qr such that dp,qr (a) = 0 ∈ Ep+r,q+r−1

r . That is to say,

dp,qr (a) ∈ Äp+r,q+r−1
r + Ap+r+1,q−r

r−1
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Then there exists b ∈ Ap+1,q−1
r−1 and c ∈ Ap+r+1,q−r

r−1 such that dp+qX (a) = dp+qX (b) + c. We have
the trivial equality

a = (a− b) + b

Clearly, a − b ∈ F p(Xp+q) and dp+qX (a − b) = c ∈ Ap+r+1,q−r
r−1 ⊆ F p+r+1(Xp+q+1). This is

precisely what it means for a− b ∈ Ap,qr+1.

ker(dp,qr ) ⊆
Ap,qr+1 + Ap+1,q−1

r−1

Äp,qr + Ap+1,q−1
r−1

Conversely, suppose that a ∈ Ap,qr+1. Then, by definition, dp+qX (a) ∈ F p+r+1(Xp+q+1) and
(dp+q+1
X ◦ dp+qX )(a) = 0 so that dp+qX (a) ∈ Ap+r+,q−rr−1 . Similarly, if a ∈ Ap+1,q−1

r−1 then dp+qX (a) ∈
Äp+r,q+r−1 by definition hence

Ap,qr+1 + Ap+1,q−1
r−1

Äp,qr + Ap+1,q−1
r−1

⊆ ker(dp,qr )

To exhibit the image isomorphism observe that, by a similar argument as for the kernel, we
have

Äp,qr+1 + F p+1(Xp+q)

Äp,qr + F p+1(Xp+q)
∼=
Äp,qr+1 + Ap+1,q−1

r−1

Äp,qr + Ap+1,q−1
r−1

Now,

dp−r,q+r−1
r (Ep−r,q+r−1

r ) ∼=
dp−r,q+r−1
r (Ap−r,q+r−1

r ) + Äp,qr + Ap+1,q−1
r−1

Äp,qr + Ap+1,q−1
r−1

=
Äp,qr+1 + Äp,qr + Ap+1,q−1

r−1

Äp,qr + Ap+1,q−1
r−1

Since Äp,qr ⊆ Äp,qr+1, we obtain the desired isomorphism. We then immediately obtain the
canonical isomorphisms αp,qr .

Proposition 8.2.6. Let X• be a filtered complex. Then the construction (Er, dr) is a coho-
mology book starting at page 0.

Proof. This is the content of Lemma 8.2.4 and Lemma 8.2.5.

Theorem 8.2.7. Let X• be a filtered complex and E its associated cohomology book starting
on page a. Given r ≥ 0 and k ≥ r + 1 we have

Zk(E
p,q
a ) =

Ap,qk + F p+1(Xp+q)

Äp,qr + F p+1(Xp+q)

Bk(E
p,q
a ) =

Äp,qk + F p+1(Xp+q)

Äp,qr + F p+1(Xp+q)

Moreover, E can be endowed with the stucture of a spectral sequence by defining its page at
infinity to be

Z∞(Ep,q
0 ) =

ker(dp+qX ) ∩ F p(Xp+q) + F p+1(Xp+q)

F p+1(Xp+q)

B∞(Ep,q
0 ) =

im(dp+q−1
X ) ∩ F p(Xp+q) + F p+1(Xp+q)

F p+1(Xp+q)

and its limit to be En := Hn(X•).
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Proof. The isomorphisms of the kth approximate cocycles and coboundaries are clear from
the definitions and it follows from this that the page at infinity of E is well-defined.

There is a natural filtration on En defined as follows. For all p ∈ Z, the canonical
inclusion F p(X•) → X• induces a morphism Hn(F p(X•)) → Hn(X•) and we denote the
image of this morphism by F p(En). This clearly defines a descending filtration on En. It is
clear that

F p(Ep+q) =
ker(dp+qX ) ∩ F p(Xp+q) + im(dp+q−1

X )

im(dp+q−1
X )

and so

grp(E
p+q) =

F p(Ep+q)

F p+1(Ep+q)
∼=

ker(dp+qX ) ∩ F p(Xp+q) + im(dp+q−1
X )

ker(dp+qX ) ∩ F p+1(Xp+q) + im(dp+q−1
X )

∼=
ker(dp+qX ) ∩ F p(Xp+q)

ker(dp+qX ) ∩ F p(Xp+q) ∩ (ker(dp+qX ) ∩ F p+1(Xp+q) + im(dp+q−1
X ))

On the other hand, we have

Ep,q
∞ =

Z∞(Ep,q
a )

B∞(Ep,q
a )
∼=

ker(dp+qX ) ∩ F p(Xp+q) + F p+1(Xp+q)

im(dp+q−1
X ) ∩ F p(Xp+q) + F p+1(Xp+q)

∼=
ker(dp+qX ) ∩ F p(Xp+q)

ker(dp+qX ) ∩ F p(Xp+q) ∩ (im(dp+q−1
X ) ∩ F p(Xp+q) + F p+1(Xp+q))

It is clear that these denominators coincide so that we have canonical isomorphisms βp,q :
Ep,q
∞ → grp(E

p+q) whence E is a spectral sequence.

Proposition 8.2.8. Let X• be a filtered complex and E its associated spectral sequence
starting on page a. Then for all p, q ∈ Z there exists a canonical isomorphism Ep,q

0
∼=

F p(Xp+q)/F p+1(Xp+q) such that the diagram

Ep,q
0

F p(Xp+q)
F p+1(Xp+q)

Ep,q+1
0

F p(Xp+q)
F p+1(Xp+q+1)

∼

dp,q0

∼

commutes.

Proof. By definition we have

Ep,q
0 =

Ap,q0 + F p+1(Xp+q)

Äp,q0 + F p+1(Xp+q)

But Ap,q0 = F p(Xp+q) and Äp,q0 ⊆ F p+1(Xp+q) and so the isomorphism follows immediately.
It is then evident from the definition of dp,q0 that the diagram given in the Proposition
commutes.
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8.3 First Quadrant Filtrations

Definition 8.3.1. Let X• be a filtered complex such that X i = 0 for all i < 0. We say that
the filtration F p on X• is first quadrant if

F p(Xn) =

{
0 if p > n
Xn if p ≤ 0

If E is the spectral sequence associated to X• then we also say that E is a first quadrant
spectral sequence.

Proposition 8.3.2. Let X• be a first quadrant filtered complex. Then the spectral sequence
E associated to X• is biregular.

Proof. Fix p, q ∈ Z such that p + q ≥ 0. Then for all pages r > q + 1 we have that
F p+r(Xp+q+1) = 0 so that Ap,qr = F p(Xp+q) ∩ ker(dp+qX ). Similarly, for r ≥ p + 1 we have
that Ap−r+1,q+r−2

r−1 = (dp+q−1
X )−1(F p(Xp+q)) so that Äp,qr = F p(Xp+q) ∩ im(dp+q−1

X ). It is then
clear from the definition of E and the filtration that E is biregular.

Remark. The same reasoning a above applies to any bounded below complexX• ∈ ob Com+(A)
with the appropriate filtration. It merely suffices to apply the shift functor enough times to
obtain a first quadrant filtration.

Theorem 8.3.3. Let Ep,q
r ⇒r H

p+q(X•) be a first quadrant spectral sequence. Then there
exists an exact sequence of low-degree terms

0 E1,0
2 H1(X•) E0,1

2 E2,0
2 H2(X•)

d0,1
2

called the five-term exact sequence associated to E.

Proof. The differential d−1,1
2 : E−1,1

2 → E1,0
2 is the zero map since E−1,1

2 = 0. Similarly, the
differential d1,0

2 : E1,0
2 → E3,−1

2 is zero. The same arguments show that the differentials with
domains and codomains E1,0

r vanish for all r ≥ 2. Hence the spectral sequence is degenerate
at E1,0

2 and we have

E1,0
2
∼= gr1(H1(X•)) =

F 1(H1(X•))

F 2(H1(X•))
= F 1(H1(X•)) ↪→ H1(X•)

Now, d−2,2
2 : E−2,2

2 → E0,1
2 is zero and hence E0,1

3 is the kernel of the differential d0,1
2 : E0,1

2 →
E2,0

2 . Note that since the differentials with domain and codomain E0,1
r are trivial for r ≥ 3,

the spectral sequence is degenerate at E0,1
3 so we have an isomorphism

E0,1
3
∼= gr0(H1(X•)) =

H1(X•)

F 1(H1(X•))

so that we have a short exact sequence

0 E1,0
2 H1(X•) E0,1

3 0

But since E0,1
3 is the kernel of d0,1

2 , we can replace the end of this short exact sequence with
d0,1

2 to obtain an exact sequence

0 E1,0
2 H1(X•) E0,1

2 E2,0
2

d0,1
2
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To obtain the final term of the desired exact sequence, observe that the differential d2,0
2

is trivial and so E2,0
3 is the cokernel of d0,1

2 . Moreover, the differentials with domains and
codomains E2,0

r are all trivial for r ≥ 3 so that the spectral sequence is degenerate at E2,0
3

and we have

E2,0
3
∼= gr2(H2(X•)) ∼=

F 2(H2(X•))

F 3(H2(X•))
= F 2(H2(X•)) ↪→ H2(X•)

Since E2,0
3 is the cokernel of d0,1

2 it then follows that the kernel of the composite E2,0
2 →

E2,0
3 ↪→ E2,0

3 is the image of d0,1
2 . This yields the exact sequence of the Theorem.

Corollary 8.3.4. Let Ep,q
r ⇒r H

p+q(X•) be a first quadrant spectral sequence. Then the
previous exact sequence admits an extension

0 E1,0
2 H1(X•) E0,1

2

E2,0
2 ker(H2(X•)→ E0,2

2 ) E1,1
2

E3,0
2

d0,1
2

d1,1
2

called the seven-term exact sequence associated to E.

Proof. Note that the differentials whose domains and codomains are E1,1
r are trivial for all

r ≥ 3 so that we have isomorphisms

E1,1
3
∼= gr1(H2(X•)) =

F 1(H2(X•))

F 2(H2(X•))
∼=
F 1(H2(X•))

E2,0
3

Note that

E1,1
3
∼=

ker(d1,1
2 : E1,1

2 → E3,0
2 )

im(d2 : E−1,2
2 → E1,1

2 )
= ker(d1,1

2 )

Moreover, E2,0
3 is the cokernel of d0,1

2 so that we get a long exact sequence

0 E1,0
2 H1(X•) E0,1

2

E2,0
2 F 1(H2(X•)) E1,1

2

E3,0
2

d0,1
2

d1,1
2

To complete the proof, therefore, it suffices to show that F 1(H2(X•)) ∼= ker(H2(X•) →
E0,2

2 ). Note that

E0,2
∞
∼= gr0(H2(X•)) =

H2(X•)

F 1(H2(X•))

so that F 1(H2(X•)) ∼= ker(H2(X•) → E0,2
∞ ). The claim then follows from the fact that

E0,2
∞ is a subobject of E0,2

2 . In particular, the differentials whose domains and codomains
are E0,2

r are trivial for r ≥ 4 so that the spectral sequence is degenerate at E0,2
4 . Note that

E0,2
4
∼= ker(d0,2

3 : E0,2
3 → E3,0

3 ) whence E0,2
4 ⊆ E0,2

3 . Similarly, E0,2
3 ⊆ E0,2

2 .
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Corollary 8.3.5. Let Ep,q
r ⇒r H

p+q(X•) be a first quadrant spectral sequence. Suppose that
the objects Ep,q

2 vanish for all 0 < q < n. Then Ep,0
2
∼= Hp(X•) for all p < n and there exists

an exact sequence

0 En,0
2 Hn(X•) En−1,1

2 En+1,0
2 Hn+1(X•)

dn−1,1
2

called the higher five-term exact sequence associated to E.

Proof. This follows from the Theorem by translating the spectral sequence.

8.4 The Spectral Sequence of a Double Complex

Throughout this section we shall assume that A is a cocomplete abelian category.

Definition 8.4.1. We define a double complex in A to be a triple (X•,•, dX , ∂X) where
X•,• is a bigraded collection,

di,•X : X i,• → X i+1,•

∂•,jX : X•,j → X•,j+1

are differentials and such that

∂i,j+1
X ◦ di,jX + di+1,j

X ◦ ∂i,jX = 0

We will often view a double complex as a commutative diagram

...
...

...

· · · X i−1,j+1 X i,j+1 X i+1,j+1 · · ·

· · · X i−1,j X i,j X i+1,j · · ·

· · · X i−1,j−1 X i,j−1 X i+1,j−1 · · ·

...
...

...

di−1,j+1
X di,j+1

X

di−1,j
X

∂i−1,j
X

di,jX

∂i,jX ∂i+1,j
X

di−1,j−1
X

∂i−1,j−1
X

di,j−1
X

∂i,j−1
X ∂i+1,j−1

X

We define amorphism of double complexes f : X•,• → Y •,• to be a collection of morphisms
f i,j : X i,j → Y i,j such that f i,• and f •,j are morphisms of complexes for all i, j ∈ Z. We
denote by 2Com(A) the category whose objects are the double complexes in A and whose
morphisms are the morphisms of double complexes.

Definition 8.4.2. Let f : X•,• → Y •,• be a morphism of double complexes. We say that f
is null-homotopic if there exists collections of morphisms

kij : X i,j → Y i−1,j, κi,j : X i,j → Y i,j−1
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such that

f = dXk + kdX + ∂Xκ+ κ∂X

0 = k∂X + ∂Xk

0 = κdX + dXκ

Given another morphism f : X•,• → Y •,•, we say that f is homotopic to g if f − g is null-
homotopic. As before, this relation is an equivalence relation and preserves composition of
morphisms so we define the homotopy category of 2Com(A), denoted 2K, to be the one
whose objects are ob 2Com(A) and the morphisms are mor(A) modulo homotopy.

Definition 8.4.3. Let X•,• be a double complex, we define the horizontal and vertical
cohomology objects of X•,• to be

H i
>(X•,j) =

ker(di,jX )

ker(di−1,j
X )

Hj
∧(X

i,•) =
ker(∂i,jX )

im(∂i,j−1
X )

respectively. We naturally have differentials

H i
>(∂•,jX ) : H i

>(X•,j)→ H i
>(X•,j+1)

Hj
∧(d

i,•
X ) : Hj

∧(X
i,•)→ Hj

∧(X
i+1,•)

making the cohomology objects into complexes. We denote the cohomology of these com-
plexes by

Hj
∧(H

i
>(X•,•)) and H i

>(Hj
∧(X

•,•))

respectively.

Definition 8.4.4. Let X•,• be a double complex. We define the total complex of X• to
be the one given by the data

Tot(X)n =
⊕
i+j=n

X i,j

dnTot(X) ◦ νi,j = νi+1,jd
i,j + νi,j+1∂

i,j

for i, j ∈ Z such that i+ j = n where νi,j : X i,j →
⊕

i+j=nX
i,j is the canonical inclusion.

Example 8.4.5. The mapping cone of a morphism, inner hom, and the tensor product of
complexes are all examples of a total complex of a double complex.

Definition 8.4.6. Let X•,• be a double complex. We define the canonical filtrations of
Tot(X)• to be

F p(Tot(X)n) =
⊕
r≥p

Xr,n−r

Fp(Tot(X)n) =
⊕
r≥p

Xn−r,r

We denote by E and E , respectively, the associated spectral sequences starting at page 0 of
the filtrations F and F . We shall use dr for the differentials on the rth pages of E and E -
it will be clear from context as to which spectral sequence we are referring to.

59



Proposition 8.4.7. Let X•,• be a double complex. Then for all p, q ∈ Z, there are canonical
isomorphisms Ep,q

0
∼= Xp,q and Ep,q0

∼= Xq,p such that the diagrams

Ep,q
0 Xp,q Ep,q0 Xq,p

Ep,q+1
0 Xp,q+1 Ep,q+1

0 Xq+1,p

dp,q0
∂p,qX dp,q0

dq,pX

commute.

Proof. By Proposition 8.2.8 we have an isomorphism

Ep,q
0
∼=

F p(Tot(X)p+q)

F p+1(Tot(X)p+q)
=

⊕
r≥pX

r,p+q−r⊕
r≥p+1X

r,p+q−r
∼= Xp,q

and, similarly, an isomorphism Ep,q0
∼= Xq,p. Furthermore, it is clear from Proposition 8.2.8

that these isomorphisms make the above squares commute.

Proposition 8.4.8. Let X•,• be a double complex. Then for all p, q ∈ Z, there are canonical
isomorphisms Ep,q

1
∼= Hq

∧(X
p,•) and Eq,p1

∼= Hq
>(X•,p) such that the diagrams

Ep,q
1 Ep+1,q

1 Ep,q1 Ep+1,q
1

Hq
∧(X

p,•) Hq
∧(X

p+1,•) Hq
>(X•,p) Hq

>(X•,p+1)

dp,q1

∼ ∼ ∼

dp,q1

∼

Hq
∧(dp,•X ) Hq

>(∂•,pX )

commute.

Proof. By Proposition 8.4.7 we have a commutative diagram

Ep,q−1
0 Ep,q

0 Ep,q+1
0

Xp,q−1 Xp,q Xp,q+1

dp,q−1
0

∼

dp,q0

∼ ∼

∂p,q−1
X ∂p,qX

The isomorphisms then follow immediately from the definition of a spectral sequence. It is
now clear that the diagram commutes since the differential dTot(X) coincides with Hq

∧(d
p,•
X )

on Hq
∧(X

p,•). A similar argument applies to the second square.

Corollary 8.4.9. Let X•,• be a double complex. Then we have isomorphisms

Ep,q
2
∼= Hp

>(Hq
∧(X

•,•))

Ep,q2
∼= Hp

∧(H
q
>(X•,•))

Proof. This is immediate from the definition of a spectral sequence.

Theorem 8.4.10. Let X•,• be a double complex. Then there exist canonical spectral se-
quences E and E associated to X•,• such that

Ep,q
r ⇒r H

p+q(Tot(X))

Ep,qr ⇒r H
p+q(Tot(X))

with low degree pages

Ep,q
0
∼= Xp,q, Ep,q

1
∼= Hq

∧(X
p,•), Ep,q

2
∼= Hp

>(Hq
∧(X

•,•))

Ep,q0
∼= Xq,p, Ep,q1

∼= Hq
>(X•,p), Ep,q2

∼= Hp
∧(H

q
>(X•,•))
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Proof. This is the content of Proposition 8.4.7, Proposition 8.4.8 and Corollary 8.4.9.

Definition 8.4.11. Let X•,• be a double complex. We say that X•,• is first quadrant if
X i,j = 0 for all i, j < 0.

Proposition 8.4.12. Let X•,• be a first quadrant double complex. Then the canonical
spectral sequences E and E associated to X are biregular.

Proof. Fix n ∈ Z and suppose that p > n. Then

F p(Tot(X)n) =
⊕
r≥p

Xr,n−r = 0

since n− r < 0. Now suppose that p ≤ 0. Then

F p(Tot(X)n) =
⊕
r≥p

Xr,n−r =
⊕
r≥0

Xr,n−r = Tot(X)n

so that the filtration F on Tot(X) is first quadrant. A similar argument shows that F is
also first quadrant. The Proposition then follows by appealing to Proposition 8.3.2.

8.5 The Grothendieck Spectral Sequence

Lemma 8.5.1 (Horseshoe Lemma). Suppose that A has enough injectives and let

0 X Y Z 0
φ ψ

be a short exact sequence in A. Given injective resolutions I•X and I•Z of X[0] and Z[0]
respectively, there exists an injective resolution I•Y of Y [0] and a short exact sequence

0 I•X I•Y I•Z 0

such that InY = InX ⊕ InZ for all n ∈ N.

Proof. Denote by x and z the differentials of I•X and I•Z respectively. Observe that we have
a diagram

X I0
X I1

X · · ·

Y I0
X ⊕ I0

Z I1
X ⊕ I1

Z

Z I0
Z I1

Z · · ·

φ

x−1 x0

(1
0) (1

0)

ψ

(t,z−1ψ)

t

(0 1) (0 1)

z−1 z0

Since I0
X is injective, there exists a morphism t : Y → I0

X such that x−1 = t ◦ φ. We
claim that (t, z−1ψ) is a monomorphism. To this end, suppose that (t, z−1ψ)f = 0. Then
z−1ψf = 0. Since z−1 is monic, it follows that ψf = 0. Hence f factors through ker(ψ) = φ,
say by g. Then 0 = tf = tφg = x−1g. But x−1 is monic whence g = 0 and so f = 0.

Now let K0, L0,M0 be the cokernels of x−1, (t, z−1ψ) and z−1 respectively. By the Snake
Lemma, the sequence 0→ K0 → L0 →M0 → 0 is exact. We thus have the diagram
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X I0
X K0 I1

X · · ·

Y I0
X ⊕ I0

Z L0 I1
X ⊕ I1

Z

Z I0
Z M0 I1

Z · · ·

x−1

φ (1
0)

x0

(1
0)

ψ

(t,z−1ψ)

(0 1) (0 1)

z−1 z0

By the same argumentation as above, we can construct a monomorphism L0 → I0
X ⊕ I0

Z .
Continuing in this way, we construct the claimed injective resolution of Y .

Lemma 8.5.2. Let X• ∈ ob Com+(A) be a complex. A Cartan-Eilenberg resolution of
X• is a double complex (Y •,•, d, ∂) together with a morphism ε : X• → Y •,0 such that

1. Y i,j = 0 for j < 0 or i ≤ 0.

2. For all i ∈ Z, the complex (Y i,•, εi) is an injective resolution of X i and induces injective
resolutions of Zi(X•), Bi(X•) and H i(X•).

3. For all i, j ∈ Z the short exact sequence

0 ker(di,j) Y i,j im(di−1,j) 0

splits.

Proposition 8.5.3. Suppose that A has enough injectives and let X• ∈ ob Com+(A) be a
complex. Then X• has a Cartan-Eilenberg resolution.

Proof. Fix i ∈ Z and choose injective reslutions I•Bi(X•) and IHi(X•) of Bi(X•) and H iX•)
respectively. Since we have a short exact sequence

0 Bi(X•) Zi(X•) H i(X•) 0

the Horseshoe Lemma provides us with an injective resolution IZi(X•) fitting into a short
exact sequence

0 I•Bi(X•) I•Zi(X•) I•Hi(X•) 0

Similarly, the short exact sequence

0 Zi(X•) X i Bi+1(X•) 0

implies the existence of an acyclic injective resolution I•Xi of X i and a short exact sequence

0 I•Zi(X•) I•Xi I•Bi+1(X•) 0

We now define a Cartan-Eilenberg resolution (Y •,•, d, ∂) of X• as follows. For each i, j define
Y i,j = Ij

Xi+1 . Let di,j be the composition

Ij
Xi Ij

Bi+1(X•) Ij
Zi+1(X•) Ij

Xi+1
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and ∂i,j = (−1)jdjIXi
where dIXi is the differential of the complex I•Xi . It is clear that this

defines a double complex satisfying the first two properties of a Cartan-Eilenberg resolution.
The splitting property follows immediately from the fact that exact sequences whose first
term is injective split.

Lemma 8.5.4. Let X• ∈ ob Com+(A) be a complex, Y •,• a double complex such that Y i,j = 0
for j < 0 and ε : X• → Y •,• a morphism of complexes. Suppose that ∂ ◦ ε = 0 and
for each i, Y •,0 is an acyclic resolution of X i. Then the induced morphism of complexes
ε : X• → Tot(Y )• is a quasi-isomorphism.

Proof. The fact that ε is indeed a morphism of complexes is immediate from the fact that ε
is one together with the fact that ∂ ◦ ε = 0. Let Ep,q

r ⇒r H
p(Tot(Y )) be the first canonical

spectral sequence associated to the double complex Y •,•. Then for all q > 0 we have

Ep,q
1
∼= Hq

∧(Y
p,•) = 0

by acyclicity. Now,

H0
∧(Y

p,•) =
ker(∂p,0)

im(∂p,−1)
= ker(∂p,0) ∼= Xp

so that ε induces an isomorphism of complexes ε : X• → H0
∧(Y

•,•). This implies that ε
induces an isomorphism on cohomology

ε : Hp(X•)→ Ep,0
2

But Ep,q
2 vanish for q > 0 and so Ep,q

∞ = 0 for q > 0 whence

Hp(Tot(Y )•) = Ep ∼= Ep,0
∞ = Ep,0

2
∼= Hp(X•)

Proposition 8.5.5. Suppose that A has enough injectives and F : A → B is a left-exact
functor. Let X• ∈ ob Com+(A) be a complex and I•,• a Cartan-Eilenberg resolution of X•.
Then there exists a biregular spectral sequence associated to the double complex F (I•,•)

Ep,q2 = RpF (Hq(X•))⇒ Rp+qF (X•)

Proof. By abuse of notation, let Ep,q
r be the second canonical spectral sequence Ep,qr associ-

ated to the double complex F (I•,•). We have

Ep,q
1
∼= Hq

>(F (I•,p)) = F (Hq
>(I•,p))

where the second isomorphism follows from the splitting property of a Cartan-Eilenberg
resolution. But Hq

>(I•,p) is an injective resolution of Hq(X•) so that

Ep,q
2
∼= RqF (Hq(X•))

Furthermore, Lemma 8.5.4 implies that Tot(Y •) is an injective resolution of X• so that

Ep+q = Hp+q(Tot(F (I•,•))) = Hp+q(F (Tot(I•,•))) ∼= Hp+q(RF (X•)) = Rp+qF (X•)
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Theorem 8.5.6 (Grothendieck Spectral Sequence). Let A,B and C be abelian categories.
Suppose that A and B have enough injectives and that C is cocomplete. Moreover, suppose
that B has enough right R-objects for some admissible class R. Let F : A → B and
G : B → C be left-exact functors such that R is adapted to G and F maps injective objects
to R-objects. Then for all X ∈ obA there exists a biregular first quadrant spectral sequence

Ep,q
2 = (RpG ◦ RqF )(X)⇒ Rp+q(G ◦ F )(X)

Proof. Choose an injective resolution I• of A[0] and a Cartan-Eilenberg resolution Y •,• of
F (I•). Then Proposition 8.5.5 implies that there exists a biregular first quadrant spectral
sequence

Ep,q
2 = RpG(Hq(I•))⇒ Rp+qG(F (I•))

On one hand, we have that

RpG(Hq(F (I•))) = RpG(RqF (X)))

and on the other hand we have

Rp+qG(F (I•)) = Hp+q(RG(RF (X))) = Hp+q(RG ◦ RF )(X) ∼= Hp+q(R(G ◦ F ))(X)

= Rp+q(G ◦ F )(X)

where the isomorphism is provided by Proposition 5.3.7.

Remark. The Grothendieck spectral sequence generalises and dualises in various ways.
Some examples are

1. If we are simply given δ-functors KA F−→ K+(B)
G−→ K+(C) then we get a similar biregular

spectral sequence in light of Remark 8.3. In this situation we would still get associated
five and seven-term exact sequences but the terms would have to be appropriately
shifted.

2. If we are given right-exact functors A F−→ B G−→ C then we can dualise the hypotheses
of Theorem 8.5.6 to obtain a biregular first quadrant spectral sequence

E2
p,q = LpG(LqF (X))⇒ Lp+q(G ◦ F )(X)

To this spectral sequence we can also associate five and seven-term exact sequences
going in the opposite direction.

9 Appendix

9.1 Roofs

Definition 9.1.1. Let C be a category. A roof from A to C in C is a diagram of the form

B

A C

f g

It is often the case that roofs will be viewed as formal fractions in C and so we shall sometimes
denote them as f−1g. We say that two roofs from A to C
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B

A C

f g

B′

A C

u v

are equivalent, and denoted f−1g ∼ u−1v, if there exists an object B′′ and morphisms
x : B′′ → A, y : B′′ → B, z : B′′ → B′ such that the diagram

B

A B′′ C

B′

f g

x

y

z
u v

commutes.

Proposition 9.1.2. Let C be an additive category and S multiplicative system of morphisms
of C. Given two roofs in morS−1C

X ′

X Y

s f

Y ′

Y Z

t g

their composition is defined using MS2 to complete the diagram

X ′′

X1 Y ′

X Y Z

u v

s f gt

to a commutative diagram and then taking the roof

X ′′

X Y

s◦u g◦v

to be their composition. This construction is independent (in S−1C) of the choice of rep-
resentative of s−1f and t−1g and also of the choice of commutative diagram obtained by
applying MS2.

Proof. Fix two roofs

X1

X Y

s1 f1

Y ′

Y Z

t g

We first show that their composition is independent of the choice of representative of s−1
1 f .

To this end, fix a roof
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X2

X Y

s2 f2

that is equivalent to s−1
1 f so that we have an object W and morphisms x : W → X in S

and y : W → X1 and z : W → X2 together with a commutative diagram

X1

X W Y

X2

s1 f1

x

y

z
s2 f2

Now form the compositions of s−1
1 f1 and s−1

2 f2 with t−1g:

U1

X1 Y ′

X Y Z

u1 v1

s1 f1 gt

U2

X1 Y ′

X Y Z

u2 v2

s1 f2 gt

Note that u1, u2 ∈ S. We now apply MS2 to the diagrams

U1

W X1

u1

y

U2

W X2

u2

z

to obtain objects L1, L2 and morphisms l1 : L1 → W, l2 : L2 → W in S and m1 : L1 →
U1,m2 : L2 → U2 making the diagrams

L1 U1

W X1

l1

m1

u1

y

L2 U2

W X2

l2

m2

u2

z

commute. We once more apply MS2 to the diagram

L1

L2 W

l1

l2

to obtain an object R and morphisms r2 : R→ L2 in S and r1 : R→ L1 making the diagram

R L1

L2 W

r2

r1

l1

l2
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commute. Observe now that

s1 ◦ u1 ◦m1 ◦ r1 = s1 ◦ y ◦ l1 ◦ r1 = s2 ◦ z ◦ l2 ◦ r2 = s2 ◦ u2 ◦m2 ◦ r2

which is in S since each of s2 ◦ z, l2 and r1 are in S. Moreover,

t ◦ v1 ◦m1 ◦ r1 = f1 ◦ u1 ◦m1 ◦ r1 = f1 ◦ y ◦ l1 ◦ r1 = f2 ◦ z ◦ l2 ◦ r2 = f2 ◦ u2 ◦m2 ◦ r2

= t ◦ v2 ◦m2 ◦ r2

By MS3 there thus exists an object Q and a morphism q : Q→ R in S such that

v1 ◦m1 ◦ r1 ◦ q = v2 ◦m2 ◦ r2 ◦ q

Now set φ1 = m1 ◦ r1 ◦ q and φ2 = m2 ◦ r2 ◦ q so that v1 ◦ φ1 = v2 ◦ φ2. Then

λ = s1 ◦ u1 ◦ φ1 = s2 ◦ u2 ◦ φ2

is in S and g ◦ v1 ◦ φ1 = g ◦ v2 ◦ φ2. We thus have a commutative diagram

U1

X R Y

U2

s1◦u1 g◦v1

λ

φ1

φ2s2◦u2 g◦v2

and so the two compositions are equivalent. We can now immediately conclude that the
composition is also independent of the choice of commutative diagram obtained by MS2 by
taking X2 = X1, s2 = s1 and f2 = f1 in the above proof.

We must now show that the composition is independent of the choice of representative
of t−1f . Suppose we are given two roofs

X ′

X Y

s f

Y1

Y Z

t1 g1

and a roof

Y2

Y Z

t2 g2

that is equivalent to t−1
1 g1. That is to say, we have an object W and morphisms x : W → Y

in S and y : W → Y1, z : W → Y2 such that there is a commutative diagram

Y1

Y W Z

Y2

t1 g1

x

y

z
t2 g2

We can apply MS2 to the diagram
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W

X Y

t1◦y

f

to obtain an object U and morphisms u : U → X in S and a : U → W making the diagram

U W

X Y

a

u t1◦y

f

commute. We thus have a commutative diagram

U

X Y1

X Y Z

u y◦a

s f g1t1

Since the composition of two roofs is independent of the choice of such a commutative
diagram it follows that the roof

U

Y Z

s◦u g1◦y◦a

represents the composition of the roofs s−1f and t−1
1 g1. Note that we also have a commuta-

tive diagram

U

X Y2

X Y Z

u z◦a

s f g2t2

so that the roof

U

Y Z

s◦u g2◦z◦a

represents the composition of the roofs s−1f and t−1
2 g2. But this roof is equal to the previ-

ously constructed roof. Hence the composition of two roofs is independent of the choice of
second roof.
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