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1 Preliminaries

1.1 Internal Groups

Definition 1.1.1. Let C be a category with finite products and terminal object 1. A group
internal to C is given by the following data

1. An object G ∈ ob C.

2. A morphism 1 : 1→ G called the unit.

3. A morphism (−)−1 : G→ G called the inversion.

4. A morphism m : G2 → G called the multiplication.

such that the following constraint diagrams commute (possibly up to isomorphism)

G3 G2 1×G G2 G× 1

G2 G G

idG×m

m×idG m ∼

(1,idG)

m ∼

(idG,1)

m

G G2 G2

1 G

∆ ((−)−1,idG)

m

1

where ∆ : G→ G2 is the canonical diagonal morphism.

1.2 Complexes and Derived Categories

Let A be a (locally small) abelian category. For ∗ ∈ {∅,+,−, b } we denote by Com∗(A)
the abelian category of unbounded, bounded from below, bounded from above, and bounded
chain complexes respectively. Given X• ∈ Com∗(A), we denote by dX the differential. If
f : X• → Y • is a morphism of complexes, we denote by C(f)• the mapping cone of f .

By K∗(A) we shall mean the homotopy category of Com∗(A) obtained by quotienting
the morphism groups of A by the homotopy equivalence relation. This is again an additive
(but not necessarily abelian) category. We say that f : X• → Y • is a quasi-isomorphism if
it induces an isomorphism on cohomology and we denote by qis the collection of all quasi-
isomorphisms in Com∗(A) and, by overload of notation, its image in K∗(A).

K∗(A) is naturally a triangulated category with triangles isomorphic to mapping cone
diagrams of the form

X• Y • C(f)• X[1]•
f
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called strandard triangles. The collection of quasi-isomorphisms in K∗(A) forms a multi-
plicative system which is compatible with the triangulation. Localising K∗(A) at qis yields
the derived category D∗(A) which is universal in the sense that any functor F : K∗(A)→ C
which maps quasi-isomorphisms to isomorphisms necessarily factors through D∗(A) uniquely.
D∗(A) is naturally triangulated with triangles given by all diagrams isomorphic to the image
of a triangle in K∗(A) under the localisation functor Q : K∗(A)→ D∗(A).

1.3 Exact Categories

Definition 1.3.1. Let A be an abelian category and B a full additive subcategory of A.
We say that B is (Quillen) exact if it is closed under extensions. That is to say, given a
short exact sequence

0 A B C 0
φ ψ

in A with A and C in B then B is also in B. We shall call morphisms φ and ψ of A appearing
in such exact sequences admissible. If E is the collection of all such exact sequences in
A then we shall sometimes refer to B as the pair (B, E) to make explicit the distinguished
collection of exact sequences.

Definition 1.3.2. Let B be an exact category which is a full subcategory of an abelian
category A. We define Com∗(B) (resp. K∗(B), D∗(B)) for ∗ ∈ {∅,+,−, b } to be the
full subcategory of Com∗(A) (resp. K∗(A), D∗(A)) consisting of complexes whose every
component is isomorphic to an object of B.

2 Picard Categories

2.1 Definitions

Definition 2.1.1. Let C be a category. We say that C is a groupoid if every morphism in
C is invertible. We denote by Grpd the category of groupoids and functors between them.

Remark. Note that Grpd has all finite products as well as the trivial category as its terminal
object.

Definition 2.1.2. We define a Picard category P to be a group internal to Grpd. We
denote by ⊗ the multiplication bifunctor implicit in the internal group structure of P .

Proposition 2.1.3. Let P be a Picard category. Then P is a monoidal category with tensor
functor ⊗.

Proof. This proof is straight-forward and follows from the relevant definitions.

Definition 2.1.4. Let P be a Picard category. We say that P is commutative if it is
symmetric as a monoidal category.

2.2 The Picard Category of Graded Lines

Definition 2.2.1. Let R be a commutative ring. We define the category of graded lines
over R, denoted lineZR, to be the one given by the following data

1. The objects are pairs (L, α) where L is an invertible R-module and α : Spec(R)→ Z
is a locally constant function.
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2. The morphisms f : (L, α) → (M,β) are isomorphisms of R-modules h : L → M such
that whenever p ∈ Spec(R) and α(p) 6= β(p) then fp : Lp →Mp is trivial.

Proposition 2.2.2. Let R be a commutative ring. Then lineZR admits the structure of a
commutative Picard category by defining

1. the multiplication to be

(L, α)⊗ (M,β) = (L⊗RM,α + β),

2. the unit object to be the trivial graded line (R, 0),

3. the inverse of a graded line (L, α) to be (L−1,−α),

4. the commutativity constraint to be given by the isomorphisms

ψ(L,α),(M,β)(l ⊗m) = (−1)α(p)β(p)(m⊗ l)

whenever l ∈ Lp and m ∈Mp.

Proof. This proof is straight-forward and follows from the relevant definitions.

Remark. Note that if X is any ringed space then we can make a similar definition of the
category of graded line bundles lineZX consisting of pairs (L, α) where L is an invertible
OX-module and α : X → Z is a locally constant function. In the particular case where X
is the affine scheme Spec(R), this reduces to the previous definition. This definition also
provides motivation for the terminology of a Picard category since the isomorphism classes
of invertible OX-modules over a ringed space X form a group typically called the Picard
group of X.

3 Abstract Determinant Functors

3.1 Definitions and Basic Properties

Definition 3.1.1. Let A be an exact category and w ⊆ morA a collection of morphisms.
We say that w is a SQ-class if it satisfies the following properties

1. Every isomorphism is in w.

2. If any two of f, g and g ◦ f are in w then so is the third.

3. Given morphisms of short exact sequences α, β and γ such that any two of them are
in w then so is the third.

We denote by Aw the subcategory of A whose morphisms are w. We will often just call Aw
exact and assume that w is given implicitly.

Example 3.1.2. Given any exact category A, the collection of isomorphisms iso in morA
is an SQ-class. Moreover, the collection of quasi-isomorphisms qis in mor Comb(A) is also
an SQ-class.

Definition 3.1.3. Let Aw be an exact category. A determinant functor on Aw is a choice
of commutative Picard category P and a functor d : Aw → P together with the data
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DF1 For every short exact sequence Σ

0 A B C 0

in A, an isomorphism

d(Σ) : d(B)
∼−→ d(A)⊗ d(C)

which is functorial in w-morphisms of short exact sequences.

DF2 An isomorphism ζ(0) : d(0)
∼−→ 1P where 1P is the unit object of P .

subject to the following axioms

DF3 Let φ : A→ B be an isomorphism in Aw giving rise to the short exact sequences

Σ′ : 0 0 A B 0

Σ′ : 0 A B 0 0

φ

φ

Then d(φ) and d(φ−1) are the compositions

d(A) d(0)⊗ d(B) d(B)

d(B) d(A)⊗ d(0) d(A)

d(Σ) ζ(0)⊗idd(B)

d(Σ′) idd(A)⊗ζ(0)

respectively.

DF4 Given admissible subobjects 0 ⊆ A ⊆ B ⊆ C of an object C in Aw, the diagram

d(C) d(A)⊗ d(C/A)

d(B)⊗ d(C/B) d(A)⊗ d(B/A)⊗ d(C/B)

commutes.

Proposition 3.1.4. Let A be an exact category and d : Aw → P a determinant functor.
Given A,B ∈ obAw, there is an isomorphism

d(A⊕B) ∼= d(A)⊗ d(B)

Proof. A and B fit into a canonical exact sequence

Σ : 0 A A⊕B B 0

which yields the isomorphism d(Σ) : d(A⊕B) ∼= d(A)⊗ d(B).
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3.2 Determinant Functors on Chain Complexes

Proposition 3.2.1. Let d : Aiso → P be a determinant functor. Then d induces a determi-
nant functor

d : Comb(Aiso)qis → P

given by setting

d(X•) =
⊗
i∈Z

d(X i)(−1)i

Proof. We only define d on morphisms. The rest of the proof can be found in [KM76]. To
this end, first suppose that X• ∈ ob Comb(Aiso) is acyclic. Let I i be the image of diX . Then
we have an exact sequence

0 I i−1 X i I i 0

for each i ∈ Z. Hence for each i ∈ Z we have an isomorphism

d(X i) ∼= d(I i−1)⊗ d(I i)

Taking the alternating tensor product over all i ∈ Z of this isomorphism yields a canonical
isomorphism d(X•) ∼= 1P . Now let f : X• → Y • be a quasi-isomorphism. Then the mapping
cone C(f)• of f fits into an exact sequence

0 Y • C(f)• X[1]• 0

which induces an isomorphism d(C(f)•) ∼= d(Y •)⊗d(X[1]•). But a morphism of complexes is
a quasi-isomorphism if and only if its mapping cone is acyclic so that we have isomorphisms

1P ∼= d(C(f)•) ∼= d(Y •)⊗ d(X[1]•) ∼= d(Y •)⊗ d(X•)−1

whence an isomorphism d(X•) ∼= d(Y •). We then define the value of d(f) to be this isomor-
phism.

Proposition 3.2.2. Let A be an exact category and d : Aiso → P a determinant functor.
Let X• ∈ Comb(A) be a complex with greatest lower bound n ∈ Z. Suppose that X• admits a
filtration F •(X•) such that F p(X•) ∈ Comb(A) and for p ≤ n we have F p(X i) = X i. Then
there is a canonical isomorphism

d(X•) ∼=
⊗
i∈Z

d(gri(X
•))

where gri(X
•) = F i(X•)/F i+1(X•) is the ith graded part of X•.

Proof. Without loss of generality, we may assume that n = 0 so that F is a first-quadrant
filtration. First observe that, since F 0(X•) = X•, we have a short exact sequence

0 F 1(X•) X• gr0(X•) 0

yielding an isomorphism d(X•) ∼= d(F 1(X•)) ⊗ d(gr0(X•)). Similarly, the short exact se-
quence

0 F 2(X•) F 1(X•) gr1(X•) 0
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yields an isomorphism d(F 1(X•)) ∼= d(F 2(X•)) ⊗ d(gr1(X•)). This combines with the pre-
vious isomorphism to provide an isomorphism

d(X•) ∼= d(F 2(X•))⊗ gr0(X•)⊗ gr1(X•)

Continuing in this fashion, we construct the desired isomorphism of the Proposition.

Proposition 3.2.3. Let A be an exact category and d : Aiso → P a determinant functor.
Given a complex X• ∈ Comb(A), suppose that H i(X•) ∈ obA for all i ∈ Z. Then there is
a canonical isomorphism

d(X•) ∼=
⊗
i∈Z

d(H i(X•))(−1)i

that is functorial in quasi-isomorphisms.

Proof. Denote Zi(X•) = ker(diX) and Bi(X•) = im(di−1
X ) so that H i(X•) = Zi(X•)/Bi(X•).

Note that the associativity axiom of d provides us with an isomorphism

d(X i) ∼= d(Bi(X•))⊗ d(H i(X•))⊗ d(X i/Zi(X•))

Moreover, we have a short exact sequence

0 Zi(X•) X i Bi+1(X•) 0

so that X i/Zi(X•) ∼= Bi+1(X•). This induces an isomorphism

d(X i) ∼= d(Bi(X•))⊗ d(H i(X•))⊗ d(Bi+1(X•))

Passing to the alternating tensor product over i ∈ Z, it is then clear that

d(X•) ∼=
⊗
i∈Z

d(H i(X•))(−1)i

We omit the proof of functoriality.

3.3 Determinant Functors on Derived Categories

Throughout this section, let A = Aiso be an exact category and d : A → P a determinant
functor.

We first recall the mapping cylinder construction. Let f : X• → Y • be a morphism of
complexes in A. Then the mapping cylinder is the complex given by the data

Cyl(f)• = X[1]• ⊕X• ⊕ Y •

diCyl(f) =

 −di+1
X 0 0

−idi+1
X• diX 0

f i+1 0 diY


Observe that there are canonical morphisms

X• Cyl(f)• Y •
αf

β′f

βf

which are quasi-isomorphisms and satisfy the relations f = β′f ◦ αf and β′f ◦ βf = idY • .
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Lemma 3.3.1. Let f, g : X• ⇒ Y • be a parallel pair of morphisms of complexes in A, If f
is homotopic to g then there exists an isomorphism Cyl(f)• ∼= Cyl(g)• such that the diagram

Cyl(f)•

X• Y •

Cyl(g)•

∼

αf

αg βg

βf

commutes.

Proof. Suppose that f is homotopic to g via the homotopy operator k. Then it is easy to
verify that the matrix  1 0 0

0 1 0
k 0 0


is an isomorphism Cyl(f)•

∼−→ Cyl(g)•. In fact, the proof of this statement is almost identical
to the proof of the same statement for the mapping cone (see [HA, Proposition 4.3.5]).

Proposition 3.3.2. d : Comb(A)qis → P descends to a functor

d : Kb(A)qis → P

Proof. We need to show that d is constant on homotopy classes of morphisms. To this end,
suppose that f, g : X• → Y • is a parallel pair of morphisms such that f is homotopic to g.
By the mapping cylinder construction, we have that

d(f) = d(βf ) ◦ d(αf ) = d(β′f ) ◦ d(βf ) ◦ d(βf )
−1 ◦ d(αf ) = d(β′f ◦ βf ) ◦ d(βf )

−1 ◦ d(αf )

= d(idY •) ◦ d(βf )
−1 ◦ d(αf )

= d(βf )
−1 ◦ d(αf )

and similarly for d(g). But by Lemma 3.3.1,

d(βf )
−1 ◦ d(αf ) = d(βg)

−1 ◦ d(αg)

so that d(f) = d(g) as claimed.

Recall that the triangles of Db(A) are diagrams that are isomorphic to a so-called stan-
dard triangle

X• Y • C(f)• X[1]•
f

Moreover, to each short exact sequence

0 X• Y • Z• 0
f g

in Comb(A) is associated functorially a triangle

X• Y • Z• X[1]•
f g
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in Db(A) via the mapping cylinder construction (see HA, Proposition 4.6.3). We shall call
such a triangle a true triangle. By a true nine-term diagram we shall mean a diagram
of the form

X•1 Y •1 Z•1

X•2 Y •2 Z•2

X•3 Y •3 Z•3

u1

f

v1

g h

u2

f ′

v2

g′ h′

u3 v3

in which each row and column is a true triangle.

Theorem 3.3.3. d : Kb(A)qis → P extends to a unique functor

d : Db(A)iso → P

such that

1. For every triangle

∆ : X• Y • Z• X[1]•u v

there exists an isomorphism

d(∆) : d(Y •)
∼−→ d(X•)⊗ d(Z•)

which is functorial in isomorphisms of triangles φ : ∆→ ∆′ in the following cases

• ∆ and ∆′ are true triangles.
• Each complex appearing in ∆ and ∆′ have the property that their cohomology
objects are in A.

2. If ∆ is a true triangle and u (resp. v) is an isomorphism then d(u) = d(∆)−1 (resp.
d(v) = d(∆)).

3. For any true nine-term diagram in Db(A) we have a commutative diagram

d(Y •2 ) d(X•1 )⊗ d(Z•1)

d(Y •1 )⊗ d(Y •3 ) d(X•1 )⊗ d(Z•1)⊗ d(X•3 )⊗ d(Z•3)

commutes.

Proof.

Part 1: Since d : Kb(A) → P sends quasi-isomorphisms to isomorphisms, the universal
property of the localisation functor Q : Kb(A) → Db(A) implies that there is a unique
functor d : Db(A)→ P such that the diagram

Kb(A) Db(A)

P

Q

d d
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commutes. This extension is defined on morphisms as follows. Fix an isomorphism f : X• →
Y •. Then f is represented by a roof s−1g where both s−1 and g are quasi-isomorphisms in
Kb(A). Then d(f) = d(g) ◦ d(s)−1.

Now fix a triangle ∆ as in the Theorem and suppose that it does not fall within one of
the two distinguished cases. Then ∆ is isomorphic to a standard triangle

∆′ : A• B• C(f)• X[1]•
f

for some f : A• → B• in Db(A), say via φ : ∆→ ∆′. Since the standard triangles in Db(A)
are just the images under the localisation of standard triangles in Kb(A), we may assume
that f is a morphism in Kb(A). Now note that the mapping cone C(f) fits into the short
exact sequence

0 B• C(f) A[1]• 0

so that d on Kb(A) yields isomorphisms

d(C(f)) ∼= d(B•)⊗ d(A[1]•) ∼= d(B•)⊗ d(A•)−1

We thus have an isomorphism d(B)• ∼= d(A•) ⊗ d(C(f)•). Composing this isomorphism
with the isomorphism d(φ) we get an isomorphism d(Y •) ∼= d(X•)⊗ d(Z•). This defines the
desired isomorphism d(∆).

Now suppose that ∆ is a true triangle. Then there exists a short exact sequence

0 X• Y • Z• 0u v

in Comb(A) yielding an isomorphism d(Y •) ∼= d(X•) ⊗ d(Z•). This gives the desired iso-
morphism d(∆) which is functorial with respect to isomorphisms of true triangles since the
assignment to each true triangle its corresponding short exact sequence is a functorial one.

Assume now that ∆ has the property that every complex appearing in it has cohomology
objects in A. Then by Proposition 3.2.3, we have an isomorphism

d(Y •) ∼=
⊗
i∈Z

d(H i(Y •))(−1)i

which is functorial in isomorphisms (and similarly for X• and Z•). But note that the long
exact cohomology sequence H(∆)• associated to ∆ is an acyclic complex in Db(A) and so

1P ∼= d(H(∆)•) =
⊗
i∈Z

d(H(∆)i)(−1)i

∼=

(⊗
i∈Z

d(H i(X•))(−1)i

)
⊗

(⊗
i∈Z

d(H i(Y •))(−1)i+1

)
⊗

(⊗
i∈Z

d(H i(Z•))(−1)i

)
This yields isomorphisms

d(Y •) ∼=
⊗
i∈Z

d(H i(Y •))(−1)i ∼=

(⊗
i∈Z

d(H i(X•))(−1)i

)
⊗

(⊗
i∈Z

d(H i(Z•))(−1)i

)
∼= d(X•)⊗ d(Z•)

which are all functorial in isomorphisms.

Part 2: Suppose that ∆ is a true triangle. By the definition of the triangulation structure
on Db(A), ∆ is isomorphic to a standard triangle

∆′ : A• B• C(f) A[1]•
f
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with f an isomorphism. But then C(f) is acyclic whence so is Z•. So we may assume
that Z• = 0 and u is an honest isomorphism in Comb(A). Then d(∆) is the isomorphism
d(Y •) ∼= d(X•) coming from the exact sequence

0 X• Y • 0 0u

which coincides with d(u) by DF3 for d on A.

Part 3: Omitted.
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