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Abstract

Let E be an elliptic curve with complex multiplication by an order in an imaginary quadratic field K of class
number 1 and g its associated Hecke character. The Coates-Wiles Theorem states that if the Hecke L-function
L(yg, s) is non-vanishing at s = 1 then F(K) is finite. This theorem fits into the larger framework of the Birch
and Swinnerton-Dyer conjecture which remains open to this day. In this essay we will explore Rubin’s proof of
the Coates-Wiles Theorem via the machinery of abstract Euler systems. In particular, we will construct the Euler
system of elliptic units by using torsion points of E to generate global units in abelian extensions of K. We will
then use a modified Selmer group to reduce the problem down to studying a particular ideal class group and
the group of global units of K. Using the Euler system, we will be able to annihilate this class group whence
the Coates-Wiles Theorem will follow via an application of the well-known Chebotarev Density Theorem and

Mordell-Weil Theorem.
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Chapter 1

Introduction

The Birch and Swinnerton-Dyer conjecture has tantalised mathematicians for the better part of five decades.
Its difficulty and importance is surely confirmed by its current status as one of the Clay Mathematics Insitute
Millennium Problems. It was first put forward by Bryan Birch and Peter Swinnerton-Dyer in the mid 1960s in
light of numerical evidence gathered using the early computers of the era. To date it remains the most well-verified
open problem in Number Theory due mostly to its exact formulation rather than asymptotic nature. The Birch
and Swinnerton-Dyer conjecture, henceforth BSD conjecture, usually takes the form of two statements known as

the weak and strong BSD conjectures which are stated as follows

Conjecture (Weak BSD). Let E an elliptic curve defined over Q and L(E, s) its L-function. Then the rank of
the abelian group E(K) is equal to the order of vanishing L(E,s) at s = 1.

Conjecture (Strong BSD). Let E an elliptic curve defined over Q of rank r and L(E,s) its L-function. Then
g LEsS) QpReg(E)|LI(E)[]], cp
s=1 (s —1)" |E(Q)tors|?
where Qp = fE(R) lwe|, Reg(E) is the elliptic regulator of E(Q)/E(Q)tors, HI(E) is the Tate-Shafarevich group of
E and ¢, = |E(Qp)/Eo(Qp)| is the Tamagawa number of E/Q,.

It is perhaps not very surprising that the strong BSD conjecture remains unproven considering the appearance
of the cardinality of the Tate-Shafarevich group in the above formula. This quantity has been proven finite for
certain elliptic curves such that L(E,1) # 0 by the work of Karl Rubin ([Rub87]). Moreover, Victor Kolyvagin
([Kol89]) showed that if the order of vanishing of L(E,1) is either 0 or 1 then the weak BSD conjecture holds
and the Tate-Shafarevich group is finite. The finiteness of the Tate-Shafarevich group remains, however, an open
problem in the general case.

Rubin’s work on the finiteness of the Tate-Shafarevich group built upon the earlier work of John Coates and

Andrew Wiles in their paper [CW77] in which they proved the following result

Theorem (Coates-Wiles). Let K be an imaginary quadratic number field with class number 1 and E an elliptic
curve over K with complex multiplication by an order in Og. If the Hecke L-function L(1{g,s) is non-vanishing

at s =1 then E(K) is finite.

It is immediately clear that the Coates-Wiles Theorem implies that the predictions made by the weak BSD
conjecture (in the case of general number fields) hold. The goal of this essay shall be to provide a detailed
exposition of Rubin’s proof of the Coates-Wiles Theorem given in his paper [Rub99]. The proof is indeed a tour
de force in the theory of complex multiplication and elliptic units along with abstract Euler systems and, as such,

we will provide a comprehensive account of all the complex machinery involved.

Chapter 2 will be concerned with calculating a particular Selmer group. We will define a modified Selmer

group in which we relax the usual cohomological conditions. We will be able to completely determine this modifed



Selmer group in the cases that are of interest to us which will then allow us to home in on the structure of the
normal Selmer group. We will furthermore show that we can annihilate the true Selmer group using our modified
one together with a certain Kummer pairing and a condition on a particular ideal class group.

In Chapter 3 we will construct the elliptic units which are a collection of global units in particular abelian
extensions of an imaginary quadratic number field. We shall show that they satisfy a distribution relation analogous
to that of cyclotomic units in cyclotomic fields. Moreover, we shall demonstrate a connection between such elliptic

units and the Hecke L-function of an elliptic curve with complex multiplication.

Chapter 4 will see us constructing abstract Euler systems which axiomatise the phenomenae exhibited by the
cyclotomic and elliptic units. In particular, we shall define a so-called p-system which shall act as a framework to
which we may attach a universal Euler system. After proving some useful properties of Euler systems, we will go
on to constructing principal ideals in p-systems. We then go on to showing how to bound and annihilate an ideal
class group using these principal ideals as relations.

In Chapter 5, we will finally provide the proof of the Coates-Wiles Theorem by exploiting the machinery
developed over the course of the essay, together with the Chebotarev Density Theorem of class field theory and
the Mordell-Weil Theorem.

Throughout this essay we shall assume that the reader is familiar with the elementary theory of elliptic curves,
complex multiplication and global class field theory. This being said, an appendix has been provided which provides
an account of well-known and important statements in the aforementioned fields used in this essay. Should the
reader find any confusion with notation, he or she is invited to view the Notation Index at the end of this document

and, indeed, the appendix.



Chapter 2

Calculation of the Selmer Group

The aim of this chapter is to calculate the 7" —Selmer group S™)(E/K) where K is an imaginary quadratic field
with class number one and 7 is the generator of some finite prime p of K. We shall do this via slightly relaxing
the conditions on the classical Selmer group to give us a modified Selmer group which contains the original one.
Through cohomological methods and class field theory, we will be able to completely determine S(”")(E /K) in
terms of homomorphisms of subgroups of the idele class group of a certain finite extension of K. In consequence,
we will be able to give a simple condition for when the 7-Selmer group is trivial in terms of the ideal class group

and global units of K (E[p]).

2.1 Galois Cohomology of Torsion Points
Assumptions. Throughout this section, we shall assume that F' is a field of characteristic zero and E/F is an
elliptic curve with complex multiplication by Ok for some quadratic imaginary number field K.

We begin by proving a well-known Lemma in the elementary theory of group cohomology.

Lemma 2.1.1 (Sah’s Lemma). Let G be a group, M a G-module and h an element of the centre of G. Then
H™(G, M) is annihilated by the endomorphism

o:M—M
z—zh -z

of M for all n > 0. In particular, if o is an automorphism then H"(G, M) =0 for all n > 0.

Proof. Consider the endomorphism of M given by the action of h. Write A* for the induced homomorphism
h*: H*(G,M) — H*(G, M) of cohomology groups. It is a standard fact of the cohomology of groups that h* = id
and so h* —id = 0. On the other hand, let f € C™(G, M). Then h™ acts on f by

W(f) = F(h gih, o h T gah) = flgrs o gn)"

where we have used the fact that h is in the centre of G. Hence h* is simply given on the cohomology groups by

the action of h. Therefore, given a cohomology class [f] € H*(G, M), we have
[0} = (h* —id)[f] = hlfT = f
as desired. O

Proposition 2.1.2. Let p > 3 be a rational prime and p a finite prime of K lying above p. Givenn € N, let C,
be a subgroup of (O /p™)™ and consider Ok /p" as a C,-module via the natural multiplicative action. If C,, is

cyclic or not a p-group then for all i € N we have H* (C,,, O /p™) = 0.
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Proof. First suppose that C,, is cyclic. Fix h # 1 in C,,. Then z — ha — z is an automorphism of O /p".
Appealing to Sah’s Lemma, we see that H' (C,,, O /p™) = 0.

Now suppose that C, is not a p-group. Let C! be its prime-to-p part. Then for all i € N we have
Hi(C! Ok /p"™) = 0 since the order of C!, is prime to the order of Ok /p™. By the inflation-restriction sequence,

we have
00— H' (cn/c;b, (oK/pn)C%) s H'(Cp, O Jp") —— H' (C", Ok /p")
whence H! (C,,, Ok /p") = 0. O

Proposition 2.1.3. Let p > 3 be a rational prime, p a finite prime of K lying over p and n € N. If either

Ok,p =Zy or E[p] € E(F) then the cohomological restriction map induces an isomorphism
HY(F,E[p")) = H'(F(E[p"]), E[p"]) G~ (F (ER"D/F)

Proof. By Theorem we have E[p"] = O /p™. This Theorem furthermore implies that G = Gal(F(E[p"])/F) C
(O /p™)*. Now, in the case that O, = Z,, we have that G is cyclic. Indeed,

Ok ng@[gn n ~ 7 n ~7Z n
S =TI O g =TV, =
which is cyclic. In the case that E[p] € E(F) then G is not a p-group since it has order prime to p.
Now consider the inflation-restriction sequence
0 —— HY(G,E[p"|%) —— H'(F,El[p"]) —— H'(F(E[p"]), E[p")“ —— H*(G,E[p"]%)
By Proposition the second and last terms in this sequence are 0 and so we obtain the desired isomorphism. [

Proposition 2.1.4. Let p > 3 be a rational prime, p a finite prime of K lying over p and n € N. Let | # p be a

rational prime and F a finite extension of Q;. Then the cohomological restriction map induces an injection
HY(F,E)pn — H'(F(E[p"]), E)pn

Proof. For notational convenience, denote F,, = F(E[p"]). Using the inflation-restriction sequence we obtain an

exact sequence
00— Hl(Gal(Fn/F),E(Fn))pn — Hl(F7 E)pn — Hl(Fn,E)pn

By Theorem E has good reduction over F,, so E = E, and Ey(F,) = E(F,). Proposition then yields
an exact sequence

0 —— Ey(F) —— E(F,) — EF,) —— 0

where F,, is the residue field of F),,. Now consider the logarithm map Ag : E1(F,) — Op,. This has finite kernel
of I-power order and maps F;(F;,) onto an open subgroup of O, . Hence E;(F),) is a finitely generated profinite
Z;-module. We may view E;(F,) as an Og-module which is still proﬁniteﬂ as restricting to an Og-module does

not change the topology on E;(F,).

We now claim that Ey(F,) is a pro-p Og-module. Indeed, Proposition implies that every a € Ok prime

to [ is an automorphism of F;(F,). Fix such an « € Og. Then for all subgroups G of Ei(F,), « acts as a

1Recall that a topological group is profinite if and only if it is compact, Hausdorff and totally-disconnected.



2.2. The Relaxed Selmer Group 5

surjective endomorphism of E;(F,)/G. If G has finite index in E;(F),) then « is moreover an automorphism of
Ey(F,)/G. Since this holds for all & € Ok prime to I, E1(F,)/G is a p-group and so E;(F},,) is pro-p.
From the exact sequence above, we see that Fy(F) has finite index in E(F},) and so the pro-p part of E(F,)

is finite, say E[p™] for some m > n. We thus have an inclusion
HY(F,/F,E(Fy))p C H' (Fo/F,E[p™]) = H' (F(E[p™))/F, E[p™])

Now note that if E[p] € E(F) then Gal(F(E[p™])/F, E[p™]) is not a p-group. Conversely, if E[p] C E(F) then
FE has good reduction by Theorem and that the residue characteristic is greater than 3. Appealing to
Corollary 3.17, F,,/F is an unramified extension so, in particular, its Galois group is cyclic. Hence either case

yields HY(F(E[p™])/F, E[p™]) = 0 upon applying Lemma [2.1.2 O

2.2 The Relaxed Selmer Group

Assumptions. Throughout this section, we shall assume that L is a number field and F/L is an elliptic curve with

complex multiplication by Ok for some quadratic imaginary number field K.
Recall for all non-constant o € Ok we have the following commutative diagram

0 — E(L)/aE(L) ——— HY(L,E[0]) ———— HY(L,E)y ——— 0

0 —— E(Lq)/aBE(Lg) — [lqerr, ' (Lq, Ela]) — [lqerre ' (Lg, E)a — 0

where we define the a-Selmer group S(a)(E) to be the kernel of the dotted homomorphism. In his paper |[Coa83|,
Coates defined a slightly larger Selmer group which can be calculated relatively easily using cohomological methods

coupled with class field theory.
Definition 2.2.1. Let a € Og. We define the relaxed a-Selmer group to be
S (E) = {ce H (L, Ela]) | resq(c) = 0 in H(Lq, E) for all q € MI™ with (q, () =1}

It is immediate from the definitions that S (E) C $® (E). Furthermore, by the usual exactness of the second

row of the above diagram, we also have the equivalent definition
S(E) ={ce H'(L,Ela]) | resq(c) = 0 in H'(Lq, E(L,)) for all g € MI™ with (q, () =1}

Proposition 2.2.2. Letn € N>; and p a finite prime of K prime to 6 and lying over a rational prime p. Suppose

that p™ is principal with generator o and that E[p™] C E(L). Then
S'“(E/L) = Hom(Gal(M/L), E[p"]))
where M is the mazimal p—emtensiorﬂ of L unramified outside of primes lying above p.

Proof. We first observe that since E(p") C E(L), the G, and G -actions on E[p"] are trivial for all finite primes
q of L and so
H'(L, E[p"]) = Hom(Gy, E[p"])

H'(Lg, E[p"]) = Hom(Gp,, E[p"))

2Recall that a p-extension of fields is a Galois extension whose Galois group is pro-p
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Now fix a prime q of L not lying over p. Theorem [A.7.3]and the fact that the residue characteristic is greater than
3 imply that E has good reduction at p. Appealing to Proposition we see that Lq(E[a])/Lq is unramified.
Letting I denote the absolute inertia group of Lq, we see that I, acts trivially on E[a] whence the image of

E(Lq)/aE(Ly) under the Kummer map is contained in Hom(Gr, /Iy, E[p"]).

Let Fy be the residue field of Ly and ¢ = N7, /0 q. We next observe that

Loy, = Gal (Fy/Fy) = lim Gal(Fpn/F) = lm 27,2 ][ z,
neN>, neN>, rational p

Suppose we are given a homomorphism ¢ € Hom(Gp, /Iy, E[p"]). Since the finite homomorphic image of a pro-p
group is a p-group, only the Z,-part of Gz /I, can contribute to ¢. By Lagrange’s Theorem, only the Z/ piZ-parts
of Zy, for 1 <1i < Np" contribute to ¢. We may thus conclude that

Hom (GL“/ 1 E [P"}) = Hom (GLq/Iq, OK/pn) =~ 0K/
Conversely, appealing to Proposition yields
E(Ly)/aE(Lq) = E(F,)/aE(F,) = OK/pn

Therefore, the image of E(Ly)/aE(L,) under the Kummer map is equal to Hom(Gp, /14, E[p"]). We then have
that

S(E/F) = {0 € Hom(Gy, E[a]) | 0 € Hom(Gy, /Iy, E[a]) for all g € M}™ with (g, (@) =1}
But this is exactly Hom(Gal(M/F), E[p™]) as desired. O

Corollary 2.2.3. Suppose that E is defined over K and let n > 1 and p be a finite prime of K prime to 6.
Furthermore, suppose that p™ is principal with generator . Denoting K, = K(E[p"]) and G,, = Gal(K,,/K) we

have
S (B/K) = Hom(Gal(M,,, K,), E[p"]) %"
where M, is the mazimal abelian p-extension of K, unramified outside of primes lying above p.

Proof. We claim that S (E/K) = S (E/K,)C. If this were indeed the case then Proposition would
imply that S (E/K,) = Hom(Gal(M,,/K,), E[p"])%" and the Corollary then follows.

We now prove the aforementioned claim. Since p is prime to 6 (and, in particular, 2 and 3) the map
O — (Ok/p)™ is not surjective. Appealing to Proposition shows that E[p] ¢ E(L). We may thus
apply Proposition to establish an isomorphism

H'(K, E[p"]) = H' (K, B[p"])%"
It is then immediately clear that the image of S (E/K) under this isomorphism is contained in S (E/K).
On the other hand, Proposition [2.1.4] implies that the restriction map

Hl(an E(E))P" - Hl(KQ(E[pn})v E(E))P”

is injective for all primes q such that (q,p) = 1. From this we may deduce that every element of H' (K, E[p"]) whose
image under res, is an element of S (E/K,,) is also a member of S (E/K). This shows that S (E/K) =
S(E/K,)% and so the claim is proven. O
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This concludes the cohomological calculations needed for the relaxed Selmer group. We observe that by
calculating these relaxed Selmer groups, we have managed to establish g-adic control over the classical a-Selmer
groups for all finite primes q not dividing a.. In the sequel, we shall make use of a certain pairing to establish the

remaining p-adic control (for p dividing «) over the classical a-Selmer group.

2.3 The Kummer Pairing

In this section we shall introduce a Kummer pairing which is an analogue of the classical one arising in the theory
of elliptic curves over number fields. We refer the interested reader to [Sil09, p.209] where he or she may find a

construction of the classical Kummer pairing.

Assumptions. Throughout this section, we shall assume that E is an elliptic curve defined over an imaginary
quadratic number field K with complex multiplication by Og. By Proposition this implies that K has
class number one. Furthermore p = 7Ok shall be a finite prime of K, prime to f, for some generator 7. Finally,

[-, F2b/ F] shall refer to the local Artin map; when necessary, we shall write o, = [z, F*"/F] to ease notation.

Lemma 2.3.1. Let A\g : E1(K,) = pO, i be the logarithm map. Then A\g extends uniquely to a surjective map

E(K,) — pO, ik whose kernel is finite and has no p-torsion.

Proof. Recall that Ag : E1(K,) = pO, k is an isomorphism. Since p is prime to f, K has good reduction at p.
Appealing to Proposition we obtain an exact sequence

0 — Ey(Ky) — E(K,) — E(F,) —— 0
where Fy, is the residue field of K. We thus see that F(K,)/E(K,) is finite. Finally from Proposition we
conclude that E(K,)/E1(K,) has no p-torsion. O
Definition 2.3.2. Let n € N>; and denote K, , = K,(E[p"]). We define the 7”-Kummer pairing to be the
map
(3 )an  B(Kyp) x Ky — Elp"]
(P,(E) = [xaKg,bn/Kp,n]Q_Q

for some @ € E(K,) such that P = 7"Q.

For the rest of this section, we fix the notation in use in the above definition.

Proposition 2.3.3. The Kummer pairing (-,-) . is bilinear and well-defined in the following sense:

1. [z, K2h /Ky ] acts on Q.
2. The definition of the pairing is independent of the choice of Q.
3. [’l}, KSF;L/KPJL]Q - Q € E[pn}

Proof. We first show that the Kummer pairing is bilinear. Observe that linearity in the first argument is immediate

so it suffices to show that for z,y € K, and P € E(K,) we have (P,zy) . = (P,).» + (P,y),». Then

<P> J"y>7r" = Qﬂxﬁy - Q = (Qa-:r, - Q)ay - (Qay - Q) = <Pa JJ>Z1;’, + <P7 y>7r"
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Now, (P,z) . € E[p™] and so, in particular, it is fixed by o, whence the linearity claim follows.

To see the first part of the well-definedness claim, it suffices to realise that the extension of K, defined by
adjoining a pre-image of P under the multiplication-by-7" map is abelian. For the second part of the claim, we

observe that any other choice of pre-image of P is of the form @ + R for some R € E[p™]. We then have
Q+R)™ —(Q+R) =Q™ R —Q-R=Q™ —Q
where we have used the fact that R is fixed by o,. Finally, we have
" (P,x) ., =7"Q —n"Q = P°* — P

Now, P is fixed by o, so we see that (P, x)_,, is a p"-torsion point which establishes the third part of the claim. O

T

Proposition 2.3.4. Given n € N>, define the w"-reciprocity map

On + Ky = Ep"]

x+— (R, x)

T

where R € E(K,) satisfies \g(R) = w. Then 0, is a surjective Gal(K, ,/K,)-equivariant homomorphism and is

the unique such map satisfying
(P,) 0 = (17" AB(P))dn(2) (2.1)
for all (P,z) € E(Ky) x Ky, Moreover, 6, also maps Oy, = Oy r — onto E[p"].

Proof. The fact that J,, is a homomorphism follows immediately from the linearity of the Kummer pairing in the

second argument. Fix (P,z) € E(K,) x K;,,. By definition we have

<P7 x>ﬂ—n = []J,KS};/KP,”}Q -Q

for some Q € E(K) satisfying 7"Q = P. We have that Ag(7"Q) = Ag(P) = «™ for some m > 1. Then
Ae(mAg(P)17"Q) = 7. Define Q' = nAg(P)~'Q so that Ag(7"Q’) = 7. Then
(P.a) e = (n ' AB(P)Q)7" — 7~ Ap(P)Q’
= A (P)Q - Q)
=71 "\p(P)d,(z)

thereby proving Equation The uniqueness of d,, then follows immediately from this formula. We next prove

the Galois-equivarience of the reciprocity map. To this end, fix o0 € Gal(K, ,/K,). Then

On(a”) = [27, K30, [ Kp.n)Q — Q
— o7 lo
= oz, K?};/Kp}n]a e yg)
P 0'71 0_71
= ([&, K3h /Ky Q™ —Q7 )
= p(2)”
where we have used the fact that 77Q° = (7"Q)° = = R° ' = R together with the conjugation property of

Frobenius elements.

It remains to prove the surjection assertions. Since the local Artin maps glue together to give the global Artin
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map, Theorem implies that if z € O, then [27, KS}Z/Kp,n] acts on E[p™] via multiplication by x~!. Indeed,
p is prime to f and so E has good reduction at p whence ¢g () = 1. It then follows that E(K,) admits no p-torsion
and E[p"] has no proper G, -stable subgroups.

Now note that the Kummer pairing induces a map

¢n : E(K,) - Hom(K',,, E[p"])

P,

P (P)
It is easy to see that ker ¢,, = 7" E(K,). Indeed,

¢on(P) =0 <= (P,z),. =0forallz € K,

= [m,K;‘Pn/Kp,n]Q = Q for some Q € E(K,) with 7"Q = P and for all z € K},
< Q€ E(K,,) for some Q € E(K,) with 7"Q = P
<= P=0with Q € E[p"] or P # 0 with Q € E(K,)

= Pen"E(K,)

and so we get an injection E(K,)/m"FE(K,) < Hom(K,'

p,ns

E[p"]). By Lemma E(K,)/m"E(K,) = Ok /p"
and we may thus conclude that imé,,  E [p"il]. Since the image of §,, is G K,-invariant, we must therefore have
that im §,, = E[p"].

Moreover, 6, (Kp n)/0n(Oy.y) is a quotient of E[p”] admitting a trivial Gk, -action. Since there are no proper
subgroups of E[p"] which are Gk, -stable, we must have that this quotient group is trivial whence 6, (Oy’,,) = E[p"]

as asserted. O

2.4 Establishing p-adic control

In this section we will use the Kummer pairing to establish p-adic control over the a-Selmer group for the remaining
finite prime p dividing a. We will then combine this with the results for the relaxed a-Selmer group to fully

determine the classical a-Selmer group under our working conditions.

Assumptions. Throughout this section, we shall assume that E is an elliptic curve defined over a quadratic
imaginary number field K with complex multiplication by Ok so that K has class number one. p = 7O shall
continue to be a finite prime of K, prime to f, for some generator m. We shall write K, = K(F[p"]) with ring of
integers O, and K, ,, and O, ,, for the corresponding structures completed at p. Finally, [, F2P/F] shall still refer
to the local Artin map.

Theorem 2.4.1. Let C'k, be the idéle class group of K,, and consider the subgroup of Ix, given by

Un =ker(d,) [ K50 [T O3

qloo qfp,00
Then

n Gal(Ky/K)
ST(B/K) = Hom (Cr gy E[p"))
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Proof. As in the proof of[2.3.4] we have an injection

pn : E(Ky)/m" E(Ky) = Hom (K7, E[p"])
[P] = (P,)

T

Note that by Equation it follows that every element of im(¢,,) descends to a homomorphism on K',,/ ker(d,)

so in fact we have an injection
E(Ky) /" E(Ky) — Hom(K,, / ker(6n), E[p"])

Since p is prime to f, E has good reduction at p and so Proposition implies that K, , /K, is unramified
whence Gal(K, ,/K,) is abelian. Fix ¢ € Gal(K, ,,/K,). Then

<P7 x>:" = O’[LC, K;EIL/KP,H]Q - QU
= [z, K/ Kpn)Q7 = Q7
=(P,z)

and so we get an injection
E(K,)/7"E(K,) = Hom (K}, / ker(,), E[p"]) ¢/ T0)

Conversely, appealing to Lemma and Proposition yields E(K,)/m"E(K,) = Ok /p" = E[p"]| and
K.,/ ker(d,) = E[p"]. By Part 2 of Hom(E[p"], E[p"])GalEr.n/Kp) are exactly the Ox-module homo-
morphisms Home, (E[p"], E[p"]) = E[p"]. Hence this injection is in fact an isomorphism.

Now let M,, be the maximal p-extension of K,, unramified outside of p. Proposition [2.2.3] now tells us that

S(WH)(E/K) consists exactly of the elements of H!(F, E[p"]) that are in
Hom(Gal(M,,/K,,), E[p"])G21Hn/5)

under resq for (q,p) = 1 and in Hom(K',,/ ker(d,), E[p"])C21(e.n/Kn) under res,. By class field theory, this is
exactly Hom(Cf, /U, E[p"]) ¢ En/K) as desired. O

Corollary 2.4.2. Let Cx, be the ideal class group of Ky = K(E[p]) and O its group of units. Then S (E/K)
is trivial if and only if Hom(Cg,, E[p]) S K BRI/ K) s trivial and 6,(OF) # 0.

Proof. Theorem implies that K7 /K is a degree Np — 1 degree extension which is totally ramified above p;
suppose P is the unique prime of K (E[p]) lying above p. Let V' = ker(d;) N O,', O the closure of O; in O, ; and
G = Gal(K,/K).

Recall the idealifier J: I, — Ix, which sends an idele to its associated fractional ideal and let 7 : I, — Cx,

be the canonical map sending an ideal to its class in Cg,. Write U = (7 o J)(K;U;) and consider the diagram

with exact rows

0,V — KUy =23 U 1
1 05, I, —=% C,

Applying the Snake Lemma to this diagram yields a short exact sequence
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X
1 —— O”’l/oiv — Oy Cosys 1

where Ck, is the idele class group of K. Expicitly, U is a subgroup of Ck, generated by some power of the class

of PB. Now, PNP~! = p is principal and so
Hom (K77, Elp]) = Hom(Ck, , E[p))
om U [p} om(Ck,, [p]
Combining this with Theorem and the fact that the functor Hom(-, E[p]) is left-exact, we see that
c G
S™(E/K)=0 <= Hom ( Kl/Ul,E[pD =0
G
<= Hom(Cg,, E[p])® =0 and Hom (OPXJ/OIV,E[]J]) =0

Now, Proposition implies that ;1 : Opx’l/V — El[p] is an isomorphism. Recall that E[p] has no proper

(}alois-s able submodules and so
Ox G E[ ] G
Hom ( P71/O—1 [,’ E[p]) =0 < Hom ( ]E/‘ ’E[p]) =0

< 071 Z V= ker(él) n Op,l
< 51(01) 7£ 0

Putting these two conditions together yields
S™(E/K) =0 < Hom(Ck,, E[p])® =0 and §,(0;) #0

whence the Corollary follows. O

It is worth noting that this is indeed a very powerful result. In normal circumstances, the determination of
the Selmer group can be quite difficult. In this case, however, we have a condition that the Selmer group is trivial
in terms of two simpler objects Hom(Cg,, E[p])¢ and O;. The former consists of three finite groups, namely an
ideal class group, a quotient of Ok and the Galois group of a finite Galois extension of number fields. The first
condition is thus effectively computable considering the existence of algorithms with well-determined complexity
to calculate all of these groups involved. The structure of the global units of a number field K is well-known by
Dirichlet’s unit theorem and a fundamental system of units for K is also effectively computable given O . We
note that while Ok is effectively computable, it is not known if it is computable in polynomial-time. We refer
the enthusiastic reader to [Len92] which gives an account of elementary Algorithmic Number Theory and provides

details of the aforementioned algorithms.

In the sequel we shall make use of this Corollary as the final step in the proof of the Coates-Wiles Theorem.
In particular, we shall use the Euler system of elliptic units to bound particular ideal class groups and show that
the above hypothesis of the above Corollary is satisfied. We will then be able to conclude that F(K) is finite by
the exact sequence of Proposition and the Mordell-Weil Theorem.



Chapter 3

Elliptic Units

This chapter will be concerned with elliptic units which are particular global units in abelian extensions of an
imaginary number field K. In some sense, these are a generalisation of cyclotomic units in abelian extensions of
Q. We shall construct them using particular rational functions of torsion points of elliptic curves with complex
multiplication by Ok . We shall moreover justify our claim that elliptic units are a generalisation of the cyclotomic
units by showing that they satisfy analogues of well-known properties of the latter. The importance of these units

will become evident when we go on to show their connection with the L-function attached to an elliptic curve.

In the first two sections, we shall study the algebraic theory of these units; in particular their construction
and their properties. In the latter two sections we shall pass to the analytic theory and demonstrate, through the

study of elliptic functions, that we can recover certain values of the L-function in terms of elliptic units.

3.1 The O-function

Assumptions. Throughout this section, we shall assume that F is an elliptic curve defined over C with complex
multiplication by O for some imaginary quadratic number field K of class number 1. We shall denote by a<Og a
non-trivial ideal of Ok prime to 6; we shall sometimes refer to this ideal as the auxillary ideal. To ease notation,

if b <Ok is any ideal then we shall write E[b]* := E[b]\ { Og }.

Definition 3.1.1. Let = and y be Weierstrass coordinate functions for a particular Weierstrass model of F.
Suppose that a € Ok is a generator for a. We define the @-function of E with respect to the auxillary ideal a
to be the rational function
Opa(Q) = a PAEN ] (#(Q) —=(P))°
PeE[a]*
Proposition 3.1.2. The O-function of E is well-defined in the sense that it is independent of the choice of
generator of a and of the choice of Weierstrass model of E. Furthermore, if L is a number field and E is defined

over L then Of 4 is defined over L.

Proof. First assume that o’ is any other generator of a. Then o = pa for some p € Q. By Proposition
we know that the exponent of O} is 12 and so o/~1? = a~!2.

To demonstrate the independence from the choice of Weierstrass model, we first suppose that E has Weierstrass

equation y? = 23 + ax + b. We now fix another Weierstrass model E’ with coordinate functions 2’ and 3’ . Then

12



3.1. The ©-function 13

x = u?z’ and y = u3y’ for some u € C*. Furthermore, we have A(E) = u'2A(E’) and |E[a]*| = Na— 1. Therefore

Op,a(Q) =a PAMENN [T (@'(Q) —2'(P)~°

PeE[a]*
_ a—12A<E)Na—1u12(Na_1) H ((E/(Q) - xl(P))_G
PeE[a]*
=a PA@EN [ @@ — ()
PeE[a]*

— a—lQA(E)Nu—l H (Z‘(Q) _ .r(P))_G

PeE[a]*

= G)E,Q(Q)

Finally, suppose that E is defined over L. To show that O 4 is also defined over L, we need to show that it is
fixed by Gr. But o and A(E) are both elements of L so they are fixed by G . Furthermore, E[a]* is stable under

the action of G, and so the product is also fixed whence O  is defined over L. O

Remark. We note that the independence of Of o of the choice of Weierstrass model for E is equivalent to ©g 4

commuting with isomorphisms of elliptic curves.

The following Theorem will be the first key ingredient in the construction of elliptic units. In particular, it
demonstrates that the O-function of E can be used to generate points in abelian extensions of K. Furthermore, it

will show that the action of the Galois group of such an extension on these points is again given by the ©-function.

Theorem 3.1.3. Let b <Ok be a non-trivial ideal prime to a and Q € E[b] an O-gnerator of E[b]. Then

1. Opq(Q) € K(b).
2. Given an ideal ¢ <Ok prime to b and ¢ a generator of ¢ we have
[C, K(b)/K]@E,a(Q) = @E,a(cQ)

Proof. Without loss of generality, we may assume that E is defined over K. Indeed, by the hypotheses of this
section, K has class number 1 and so, in particular, it is its own Hilbert class field. Hence F is isomorphic to an
elliptic curve with Weierstrass model defined over K by Proposition Proposition further shows us that

it suffices to consider the ©-function of this curve which is defined over K.

Part 1: Now consider b as a modulus and given a finite prime p € M, define the set

14+ p°®) if ptoo,b(p) >0
U®) = 0, e ifptoo,b(p) =0
C* if p|oo
Let U® = HpeMK U®®) which is a subgroup of Ix. Fix an idele z € U® and, to simplify notation, write o, =
[z, K®®/K]. By Theorem 5.15, we have that 1z (x) is an automorphism of E and Q°* = ¢5(Q). By Part 1 of
Theorem we thus have

@E,u(Q)gz = eE,u(QUI) = ®E,u(7/}(l')Q) = eE,u(Q)

But by class field theory, [U®, K2 /K] = Gal(K /K (b)) and so O .(Q) is fixed by every K (b)-automorphism of
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K whence O (Q) € K(b).

Part 2: Fix an idele « € Ix such that J(z) = ¢. Since (b,¢) = 1, we have xz, = 1 for all finite primes p | b. By
Theorem we have that ¢¥(z) € cO) and that Q7 = ¢g(z)Q. Now, recall that the ray class field K (b) is the
maximal abelian extension of K unramified outside of primes dividing b. In particular, the Artin map [c, K (b)/K]

makes sense and so, by the compatibility of the ideal and idelic versions of the Artin map, we have that

Or,a(Q)7 = Opq(Q)°" = 0p4(Q7") = Or.u(Ve(2)Q) = Opa(cQ) O

As in the proof of the Theorem we may assume, without loss of generality, for the rest of this section that
FE is defined over K.

Lemma 3.1.4. Let p be a finite prime of K prime to § and let E be endowed with a Weierstrass model that is
minimal at p. Suppose that b and ¢ are non-trivial ideals of O such that (b,¢) = 1. Let B € E[b] have exact
order b and C € Elc| with exact order ¢. Then

1. If b =" for some n € N>, then

2. If b is not a power of p then vy(x(B)) > 0.

3. be is not a power of p then vy(x(B) — x(C)) = 0.
Proof.

Part 1: Let E be the formal group associated to E over Oy k. Let m be the endomorphism of E given by ¢ g(p)
and [7] be the corresponding endomorphism of E. Consider the power series

[7"](X)

IX) = fm 1))

in Oy k[[X]]. Now, Theorem implies that 7 acts as Frobenius on E. Since p is prime to §, E has good
reduction at p so appealing to Propositionshows that f(X) = XNp"=Npr ! (mod p). Moreover, Proposition
3.14 implies that f(X) = (mod X). Hence by the Weierstrass Preparation Theorem (see |Ger83|), there exists
a distinguished polynomial e(X) € O, k[X] of degree Np"~!(Np — 1) and a unit u(X) € Oy x[X] such that
f(X) =e(X)u(X). The two previous conditions imply that e(X) is in fact an Eisenstein polynomial at p.

Now, the reduction of 7 is the Frobenius endomorphism which is a purely inseparable endomorphism of F.
Hence, Proposition implies that Ep"] C Ey(K,) & E(p) via the logarithm map A It then follows that
—x(B)/y(B) is a zero of f(X) and, in particular, it is a root of e(X). By the fact that e(X) is an Eisenstein
polynomial and Proposition we then have that

3 1

i = (g ) = (el — 0ou(B)) = t(a() = Sunla() = ~ Joyla()

and so

-2

vp(z(B)) = Np—T1(Np — 1)
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as desired.

Part 2: Now suppose that b is not a power of p™. Appealing to Proposition we see that B ¢ F;(K,) and
so Proposition implies that v,(z(B)) > 0.

Part 3: Let B,C € E(F,) be the reductions of B and C. Suppose, for a contradiction, that v, (z(B) — z(C)) > 0.
Then

vp(z(B) —2(C)) >0 <= z(B) =2(Q) (mod p)
< z(B) ==z(C)
— B=+4C
<~ BF(C=03

< BFC e Ei(Ky)

On the other hand, b is prime to ¢ and so the order of B F C is not a power of p. Applying Proposition then
yields B ¥ C ¢ Ey(K,) which is clearly a contradiction. We must therefore have that v, (z(B) — z(C)) =0. O

The next theorem is the second key part of the recipe in the construction of the elliptic units. In particular,
it provides a way to generate global units of abelian extensions of K, namely those that coincide with certain ray

class fields of K.

Theorem 3.1.5. Let b< O be a non-trivial ideal prime to a and B € E[b] an Ok-generator of E[b]. If b is a
power of some finite prime p of K then O (B) € K(b) is a P-unit for all finite primes P of K(b) not lying over
p. Moreover, if b is not a prime power then ©g «(B) is a global unit of K(b).

Proof. Fix a finite prime q of K such that b is not a power of q. Let P be any finite prime of K (b) lying over q.
By Proposition E isomorphic over K to an elliptic curve with good reduction at q. We may thus, in light
of Proposition [3.1.2] assume that E has good reduction at q. In this case, q { A(E) and so vp(A(E)) = 0. Let

n = vy () for some generator « of a. Then

vp(Op.a(B) =—-12n—6 Y vp(z(B) —z(P))
PeE[a]*
=-12n-6 » v —z(P) =6 > wvp(z(B)—x(P)) (3.1)
PcE[pr]* PeE[a]\E[p"]

First consider the third term of the above expansion. By hypothesis, B does not have order a prime power.
Moreover, neither can P since n is the greatest power of p dividing a. Part 3 of Lemma then implies that
this term vanishes.
Now consider the second term of the expansion. We observe that we can write it in the form
> vp((B) -y > wp@B)—a(P)
PeE[pm]* i=1 PEE[p’\E[p*~]

where we understand E[p°] = { O }. Now, B does not have order exactly a power of p and so vy (2(Q)) > 0 by
Lemma Furthermore, each P € E[p']\E[p'~!] has order exactly p’. Appealing once more to Lemma
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and using the valuation axioms, we then have that

NNgE

)
S upa(B) —a(P) = > N T(Np 1)

PEE[pr]* i=1 Bp\Elp—!
—2

(Np" ' (Np — 1))W

-

Il
-

7

=-2n

where we have used Proposition to calculate the cardinality of E[p‘]\E[p‘~!]. Inserting this back into
Equation yields v (O q(B)) = 0 and so O 4(B) is a P-unit. In the case that b is a power of a finite prime
p of K, we see that ©p (B) is a P-unit for all finite primes P of K (b) not lying over p. In the case that b is not
a prime power then Og ;(B) is a P-unit for all finite primes P of K(b). But this is exactly what it means for
Of «(B) to be a global unit and so the Theorem is proven. O

3.2 A Distribution Relation

We will now show that the ©-function satisfies an analogue of the so-called distribution relation of cyclotomic
units. We recall that a cyclotomic unit is a unit in a number field given by a product of terms % — 1 where (,, is

an nth

root of unity and 0 < a < n. In particular, the group of cyclotomic units forms a subgroup of finite index
in the global units of a cyclotomic field. If we define g, = €™ — 1 where a is a rational number prime to some
rational prime p then we have the distribution relation pr:a gp = go. For more details on cyclotomic units, we

encourage the reader to see [Lan90, §6.3].

Assumptions. Throughout this section, we shall assume that K is an imaginary quadratic field and F is an elliptic
curve defined over K with complex multiplication by Ok. As before we may assume, without loss of generality,

that K has class number 1. We let a < Ok be the auxilliary ideal prime to 6.
Lemma 3.2.1. ©(E,a) admits the divisor

div(Op,q) = 12Na[Og] =12 > [P]
PEE[q]

Proof. Fix a Weierstrass model of E with coordinate functions x and y. By the elementary theory of elliptic curves
(see [Sil09, II1.3.1]), the z-coordinate is an even rational function with exactly one pole at O of order 2. We

therefore see that the factor z — x(P) in the ©-function admits the divisor [P] + [-P] + 2[Og]. It follows that

div(©pa)=~6 Y [P]+[-P] 20k

PeE[a]*
=12 > [0Og]-6 > [P]+][-P]
PeEa* PeE[a]*
=12(Na—1)[0g] —12 > [P]
PeE[a]*
= 12Na[Og] — 12 ) [P] O
PEE[q]

Theorem 3.2.2 (Distribution Relation). Let (8) = b< Ok be an ideal prime to a. Then for all Q € E(K) we
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have
[I ©6a(@+B) =05..(5Q)
BeE[b]
Proof. We first consult Proposition to see that both sides of the above equation are rational functions of F
defined over K. We claim that they, in fact, have the same divisor. If this were the case, then their ratio would be

a constant in C*. It would then suffice to show that such a constant would be equal to 1 to establish the Theorem.

Applying Lemma to the left hand side yields

div [ J[ €sa@+B)| = > div(Opa(Q+ B))

BEE[b] BEE[b]
= > |12Na[B]-12 ) [P+B]
BeE(b] P€eElq]
=12Na > [B]-12 Y
BEE[b] QEE(ab]

On the other hand, we immediately have

div(Opq(8Q)) =12Na > [B]-12 >  [Q

BeEIb] QEE[ab]
Hence, by the reasoning above, the quotient of the left hand side by the right hand side is some constant A € C*.
Now let « be a generator of a. We have that
[scEmn ©F.a(Q+ B)
6]
eE,a(BQ)
_ e @ *AE)N T peppa- @(Q + B) —(P)) ™"
a”PAEIN ] pe prg- (#(BQ) — 2(P))~°
a~PNOA(E)Ne(Ne-1) [sepp [pepq-(#(Q + B) — x(P))~°
0 2AEN e - (@(5Q) — 2(P)) 0
A(B)Ne=DNe=DTT oy T pepra- (2(Q + B) — 2(P)
PN [, o (0(AQ) — 2(P)) 0
Evaluating this ratio at @@ = Og shows that
A(E)(Na 1)(Nb—1) 6
A= a12(Nb=1) 312(Na—1) H ]._.[ (P))

BeE[b]* PEE[a]*

A=

where we considered the Laurent expansion of the z-coordinate function to pull out the 8 term. Now write A = 4%

where
A(E)(Na—l)(Nb—l)/'w oy
7= Q12(Nb=1)/w g12(Na—1)/w H (@(B) —a(P))~ "
BeE[b]*
PeEa]"/£1
where we have used the fact that (a,6) = 1 to write the product in its compact form. Denote w = |O)|. By

Proposition we know that w is either 2,4 or 6 and that O} is annihilated by exponentiation by w. It
therefore suffices to show that v € Of.

To this end, fix any finite prime p of K along with an extension v, of the p-adic valuation to K. By Proposition

and Proposition we may assume that £ has good reduction at p so that v,(A(FE)) = 0. Since a and b
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are coprime, we may assume, without loss of generality, that p { a. Denote m = v, (). Then

wop ()
YO (Na-m— Y w(e(B) —a(P))
BeE[b]"
PeE[a)*/+1
We observe that for P € Efa]*/ £ 1 we have
> ow@B) —x(P) = Y w@B)-x(P)+ >, v(x(B)—x(P))
BeE[b]* BeE[p™]* BeE[b]\E[p™]
Since a is prime to p, Part 2 of Lemma [3.1.4 immediately implies that the term
> wla(B) ()
BEE[b]\E[p™]
PeE[a]"/£1

vanishes. The Lemma furthermore gives us

Yo @ —xP)=" > D > @B —x(P)

BEE[p™]" PEE[a]*/+1 | i=1 BEE[pi|\E[pi—1]
PEE[a)* /1
_ Z _Q(Npi _ Npi—l)
1$i2m (Np’l _ Npl—l)
PeRa]” /41
=-m(Na—1)
Putting this together shows that v,(y) = 0. But p was arbitrary and so v € O} whence A =1 as claimed. 0

Corollary 3.2.3. Let b<aOy be an ideal prime to a and B € E[b] of order exactly b. Given a finite prime (w) = p
of K dividing b, define the ideal b’ to be the one given by dividing b out by p. If the natural map O — (Ok /b’)*

s injective then

@E,a<7TB) if p | v

N N Op.«(B) =
K(v)/K() OB.a(B) @Eﬁ(WB)l_((K(b/)/K)’p)71 ifpte

Proof. To ease notation, denote B = (O /b)* and B’ = (O /b')*. Consider the diagram with exact rows

1 0% 0% 1
1 —— 1+b'3B B B’

By the Snake Lemma, we then have a short exact sequence
/ B B’
1— 1408 — /Ox—> /Ox—>1
K K

On the other hand, K has class number one and so by Theorem we have a short exact sequenceﬂ

1 o) B cl 1

where we are viewing b as a modulus of K. We also obtain a similar sequence for b’. We thus see that B/(Oj)
and B’/(0}) are the ray class groups modulo b and b’ respectively. In light of this, we now have a short exact

sequence

INote that in both exact sequences, we are slightly abusing notation - we intend to quotient out by the image of OIX( in the
corresponding quotient groups.
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1 —— 1+0'B (o2 cy 1

By Galois Theory, we thus see that 1+ 08 = Gal(K (b)/K(b')) = G. Given g € 1+b'B, denote by o4 the element
of G under this correspondence. By Part 2 of Theorem and the definition of the norm we have
Nx(v)/x(0) Or.a(B) = [[ ©r.a(B)7 = [[ Op.a(9B)
geG geG

‘We now observe that

{9B|geG}={QecE]|nQ=nB,Q ¢ E[t]]}
In the case that p | b’ then the above set equals { B+ Q | @ € E[p] } and so the distribution relation implies that
Nk o)/ (v) OF,a(B) = H OB+ Q) =0Og.q.(7B)
QeE[p]
Now in the case that p { b’ then the above set equals { B+ Q | Q € E[p],Q # —B (mod E[b'])}. Choosing
P € E[p] such that B + P € E[b’], we have

OF,a(B+ P)Ng@)/k) Ora(B) = Op. (B + P) H Op,a(B+ Q) =0Op(rB)

QEE(p]
Q#Z-B (mod E[b'])

Appealing to Part 2 of Theorem we have that
Op.a(B+ P)KCVK) — @p (7B + 1P) = Op 4(rB)
whence
N o)/ (') OBa(B) = @E,u(7TB)17((K(b/)/K)’p)_1
as required. O

We end this section by noting that the above Corollary is yet another generalisation of a particular property

t

of cyclotomic units. Indeed, let ¢, be a primtive n'” root of unity for some n € N+ ;. Then for any rational prime

p we have

Cm*]- 1fp|m

N mp — 1 =
Qo) QG G (G — 1)@/ if ptm

This striking similarity between cyclotomic units and the units we have constructed in this chapter is exactly what
will motivate our definition of Euler systems. The axomatisation of these phenomenae will allow us to study these
objects in full generality.

That being said, we would like to further build upon this theory before we fully define elliptic units. Indeed,
we would like for our units to be related, in some way, to certain values of the Hecke L-function attached to an

elliptic curve with complex multiplication. This is exactly what we shall accomplish in the rest of this chapter.

3.3 The Eisenstein-Weierstrass Connection

In the spirit of Grothendieck’s philosophy of Géométrie Algébrique et Géométrie Analytique we now shift perspect-

ive to the analytic theory. In this section, we will study the connection between the Weierstrass and Eisenstein
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theories of elliptic functions. In particular, we shall show that we can express the ©-function in terms of certain

Eisenstein series.

Assumptions. Throughout this section, we shall assume that K is an imaginary quadratic field and F is an
elliptic curve defined over K with complex multiplication by Ok so that K has class number 1. We continue
to let (o) = a < Ok be the auxiliary ideal prime to 6. We let A C C be the lattice associated to F under the
correspondence of Theorem This correspondence also implies that O A = A so we can choose Q2 € C* so
that A = QOgk. Furthermore, by Proposition we have that E[a] corresponds to a~*A/A. To once again
ease notation, we shall write a 1A/A* = (a71A/A)\ {0}. After choosing a Weierstrass model of E, we fix an an

analytic isomorphism

¢:C\ = EC)

2 (p(2;A), 9/ (2,4)/2)
and denote

Onal(2) = (Opa0é)(z) = PAWNT T (p(=4) - p(us 4))~°
u€a~1A/A*

Definition 3.3.1. Let L C C be a lattice. We define the fundamental @-function of L to be
0(z; L) = A(L)e =Dz (5 )12
Lemma 3.3.2. Let L C C be a lattice. Then 0(z; L) is L-perioidic.

Proof. We need to show that for all w € L we have 6(z +w; L) = 6(z; L). To this end, fix w € L. By Proposition
[A4.1] we have

9(2 + w;L) — A(L)e—6n(z+w;L)(z+w)O_(Z + w;L)12

= A(L)e—6n(z+w;L)(z+w)w(w)12612n(w)(z+w/2)o,(z;L)12

where ¥(w) = 1 if w € 2L and —1 if w & 2L. A routine, yet somewhat lengthy, calculation shows that the

exponent of the exponential reduces to —6n(z; L)z O

Proposition 3.3.3. Consider the function

_ OGN
RETRY

Then f(z) is a rational function on E defined over C and is equal to O 4(z).

Proof. By Lemma f(2) is A-periodic. By inspection and the properties of the other functions involved in f,
we see that f is holomorphic and so, in particular, it is an elliptic function. Appealing to Proposition shows
that f(z) is a rational function of F, defined over C.

To prove the second claim, we first note that by Proposition o(z; A) has a simple zero for every z € A
and no other zeroes. Hence f admits the divisor

12Naf0] =12 > [y
u€a~1A/A

as a function on C/A. By Lemma this divisor is equal to that of ©4 4 and so their ratio must be some

constant A € C*. Furthermore, A(a=*A) = a'?A(A) and from this we deduce that f(z) has Laurent expansion
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with first term

O[_12A(A)Na_1212(Nu_1)

On the other hand, it is immediately obvious from Lemma that ©, 4 also has Laurent expansion with the

same first term whence A = 1 and f(z) = O q(2) as desired. O

Definition 3.3.4. Let L C C be a lattice. For all k£ € N>;, we define the Eisenstein series attached to L of

weight & to be the function
(z+w)
= li
I D o

where we understand the limit to mean evaluation of the analytic continuation of the series at s = k. We note

that if £ > 3 then

Bi(zL) =Y ﬁ

weL

Proposition 3.3.5. Let L C C a lattice. Then for all k € N>3, we have

Ei(35L) = (51 L) — sa(L)z — A(L) '

Ea(2; L) = p(z; L) + s2(L)

1\k (k—2)
Ey(z L) = (l<<:1)1)' (i) p(2; L)

Proof. We shall only provide a sketch of the proof of this Proposition; for further details, see |[GS81} Proposition
1.5].
First suppose that k = 1. Consider the function

zZ+w w sz Z
i) = gt 3 (s [ 5 20-9))

0£wEL

Then ¢5 is convergent for R(s) > 1/2 and ((z; L) = lim, .1+ ¢s(z; L). When R(s) > 3/2, we can rearrange the

terms of the series. In particular,
Z wlw| ™2 =0
0#weL

since we may pair up terms with opposite signs. Moreover, the series Zwel |w| =2 has a simple pole at s = 1
with residue A(L)~!. Then

(z+w)" 2%

|z + w|?s +zA

C(z; L) — zso(L) = lim Z

s—1t wel
= Ey(z; L)+ ZA(L) ™!

which proves the case where k = 1.

Now suppose that k = 2. By [Wei76, VIII §14] we have that d/dzFE1(z; L) = —Es(z; L) whence this case follows

from the previous one.

The case where k € N>3 is immediate from the definition of the Weierstrass gp-function. O

The next theorem provides us with the connection between the Eisenstein and Weierstrass points of view.
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Coupled with results in the next section, this will demonstrate the power of the Eisenstein series as the middle-

man between the ©-function and the L-function.

Theorem 3.3.6. Given n € N>; we have that

k
(ci> log O a(2) = 12(=1) 1 (k — 1)!(NaFEy(2;A) — Ex(z;a7A))

Proof. By Proposition we can write the ©-function in terms of the fundamental #-function of A and so

d\" d\". 0z A)Ne
(i) osonet = () ety
(k=1)
= (;) [Nud log 6(z; A) — ilogﬁ(z;a_lA) (3.2)
y4

dz dz
Assume that & = 1. Then by the definition of 6(z; A) we have

d
e log 0(z; A) = —12s5(A)z — 12A(A) 712 4+ 12¢(2; A) = 12E(z; A)
Now assume that k = 2. Then differentiating the above, we have

<ddz>210g 0(z; A) = —12s5(A) — 12p(2; A) = —12F5(z; A)

Finally, suppose that & € N>3. Then

(k=2)

(i)kloga(z;m ~(4) 12— 120(0)
(

These calculations hold completely analogously for a='A and so the Theorem follows upon substituting each case

back into Equation O

3.4 The Eisenstein-Hecke Connection and the ®-function

In this section we shall make good on our promise to complete the other half of the puzzle and demonstrate the
connection between the Eisenstein series defined in the previous section and the Hecke L-function. We recall that
by Proposition the value of the ©-function of an elliptic curve E depends only on the isomorphism class of
E over C. In order to have any hope of expressing the L-function of E (which is dependent on E itself) in terms
of the Eisenstein series, we shall have to equip © with data dependent on E. We shall do this via constructing a
new rational function ® on F which is a product of certain translates of the ©-function. We will then show that

this is enough to determine the desired connection.

Assumptions. We continue to use the assumptions from the last section. We recall that L(1*, s) is the L-function
associated to powers of 1. Furthermore, if m < O is an ideal divisible by f and ¢ is prime to m then Ly, (¢F, s, ¢)
is the partial L-function whose defining series is restricted to ideals of O prime to m such that [b, K (m)/K] =

(¢, K(m)/K)].
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Definition 3.4.1. Let F' be an Ok-generator of E[f]. We define the ®-function of E to be the rational function

defined over K given by

Ppa(Q) =Ppqr(Q) = (Og,q0Tr)(Q)

oceGal(K(f)/K)

where we understand 7p : £ — E to be the translation-by-P map on E.

Remark. We note that the action of Gal(K (f)/K) on F € E[f] is well-defined since Part 1 of Theorem implies
that F' € E(K(f)).

Proposition 3.4.2. Let B;j be a collection of ideals of O that are prime to af such that the Artin map induces
a bijection between Bj and Gal(K(f)/K). Then

®p0(P) = [[ Opa(ts(0)F+Q)

be By

Furthermore, if ¢ <Ok is an ideal and Q € El¢] that is not an f-torsion point then ®g (Q) is a global unit of
K(E|c]).
Proof. The first assertion follows immediately from Corollary 5.16ii which asserts that the action of [b, K (f)/K] €
Gal(K (f)/K) is given by multiplication by 1 g(b).
To see the second assertion, it suffices to realise that ¥ g (b)F + @) generates a torsion group given by an ideal
that is not a prime power whence Theorem implies that ®g (Q) is a global unit. O
Similar to the ©-function, we also have an analytic definition for the ®-function in the form of the following

definition.

Definition 3.4.3. Let f be a generator of f. We define the ®-function of C/A to be

Ppa(2) = Paaf(2) = P, a,8(w/ f)(£(2))
The following theorem gives us the connection between the Hecke L-function and the Eisenstein series.

Theorem 3.4.4. Let m < Ok be an ideal divisible by f and v € m~1A/A an m-torsion point of exact order m.

Then for all k € N>1 we have

Er(v; A) = v ()" Ly (05", i, )

where ¢ = Q" ym

Proof. Let p be a generator of m so that we may write v = vQ/u for some v € Ok not divisible by m. For

sufficiently large s we have

Z|U+w _ Z (VQ/p+ @)k Z (19/p + Qu)*

v+ wl? v+ wl?s v/ 1+ Qul?s

weNO K weOk

_ o Z (v/p + w)*
2s 2s
QPP S5 v/t w|
_ QF |u* Z (7 + pw)*
OF i 2 Tl
ar |uf> B
= 2s 7k Z 2s (33)
TP ST}
B=~ (mod m)

weOk
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By Theorem YE(B0k) = BOk so that Yr(Ok)/B € OF. Let Z = {p € Ok | ((8),f) =1} and define a

multiplicative map

e:Z — O

Ye(B0K)
B

By the definition of the conductor f, € must factor through (Og/f)*. Hence for all 5 € Ok such that 8 = v

8~

(mod m) we must have that

- o
B= 1/1E(5(9K)7¢E(ﬁy x)
v
To ease notation, denote oy = [b, K(m)/K)]. It then follows that
- —k
B* >y Ve (BOK)VENOK) _ i WOK Up (0) _ Uh(),
Z THhoe — — N Lm(wE 787C)
2s 25~k Z s k
P o) 553, |B%> *ag, Nb
B=v (mod m) B=v (mod m) Tp=0¢

Substituting this back into equation [3.3] yields

+w)k Q8 |uP ) —k
Z < Jotw QP gF A La(¥s"ss,0)

OF |pf* vi() |
TP A ok L(¥5,s,¢)

Q2% [pf? —k
|Q||25 | ||2k kwE( ) m(T/JE 757C)

The Theorem then follows upon passing to the analytic continuation and evaluating at s = k. O
Lemma 3.4.5. Let a< Ok be an ideal prime to §. Then for all k € N> we have

Ex(za7'A) = ¢p(a)* By (¢r(a)z; A)
Proof. Fix a generator « of a and first suppose that £ = 1. Then

Ey(z;a7'A) = (2507 A) — sp(a'A)z — A(a™tA) 1z

1 1 1 z
e Z (z "o lw Tatw T (a—lw)Q)

0AweA

— | lim Z (o™ w) e w|7** | 2 = [77 covol (C/a™"A)] 2

—a | lim Z w2 |w|~** | (az) — |af [r7! covol (C/A)] 2
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Now suppose that k£ = 2. We then have that

1
By(z;a7'A) = ——i— E ( - 2) + lim E (aw) 2 |aw| ™%
obwen (z+ aw)? (aw) =0+ (T

1

= o? E < —) +a? lim g w2 |w| ™2

2 S
0AweA aZ + w w —0t 0AweA
= a?Ey(az; A)

Finally, suppose that £ = 3. It stands that

1 1
Ep(z;07A) = Z =" Z ——— =ad"Ep(az;A)

1 k k
G gl

Appealing to Theorem shows that o = ¢¥g(a) whence the Lemma follows. O

Proposition 3.4.6. Let f be a generator of the conductor §. Then for all k € N>q we have

a\F
(dz) log @4 q(2)

Proof. As usual, fix a collection Bj of ideals of Ok prime to af such that the Artin map induces a bijection between

Bj and Gal(K (f)/K). To ease the exposition, let u = Q/f. By the definition of the ®-function, Theorem [3.3.6]

= 12507 (—1)"L(k — 1){(Na — ¢(a)") L(0s, k)

z=0

and Lemma [3.4.5] we have that

a\*
(dz) log @4 q(2)

(i)kbg T ©aa(wr(o)u+2)

beB;

S () wsona

beB;

z=0 z=0

z=9Ygr(b)u
D (12(=1)* " (k — D)I(NaEy(¢p(b)u; A) — Bx(Yp(b);a'A)))

be By

=12(-1)* (k= 1)! { Na > Ep(¢u(®)u;A) —¢Yp(@)* Y Ex(ds(ab)u; A)

bGBf bEBf
We next observe that the multiplicativity of the Artin map implies that the collection aBj is also in bijection with
Gal(K(f)/K). We may thus assume, without loss of generality, that the ¥ g(a) factor does not occur in the first

argument of the Eisenstein series in the second term above. Appealing to Theorem [3.4.4] shows that

k
(i) log®pa(z)|  =12(=1)* (k- 1)!(Na - vp(a)*) Y Ep(¢e(b)u,A)
z=0 be By
=12(=1)" ' (k - 1)!(Na — ¢ (a)*) Y (¥5(0)u) *)p(0)* Li(s &, b)
beB;
= 12505 (—1)*1(k — 1)/(Na — ¢p(a)") L(0s k)
and so the Proposition is proven. O

This Proposition forms a key component in the proof of the Coates-Wiles Theorem. Indeed, it will aid us in
demonstrating the connection between the value of L(vg, 1) and the elliptic units.

Armed with this result, we are now finally able to define our desired collection of units. These will be at the

very heart of the proof and, as such, we will study them in further generality in the next Chapter.
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Let p be a finite prime of K prime to (f) = f and to 6. Let R be the collection of square-free integral ideals of
Ok prime to 6afp. Let K,, = K(F[p"]) and, given v € R, write K} = K, (E[t]).

Definition 3.4.7. For all n € N,,;>9 and v € R, we define the elliptic units of K to be the elements of K given
by

Mn(v) = a0 p (Ve (") 1)

Proposition 3.4.8. Let n € N,>¢ and v € R. Then n,(v) is a global unit in K and the elliptic units satisfy the

norm compatibility relations

1. For all primes q € R not dividing v we have

— t -1

2. Ngx /i Mns1(t) = ()

Proof. The fact that 7, () is a global unit follows immediately from Proposition m

To prove the first relation, we first observe that by Theorem we have that G = Gal(K1*/K})
Gal(K3"®/KJ*). Expanding the definitions, we have

Nicae /s M (q0) = [ [ Apacrn(€@e(p"ar) Q)
oceG

In order to switch to the algebraic perspective, write F' = £(Q/f) and note that Q = &£(¢Yp(pmqt) ~1Q) € Ep"qt]
has order exactly p"qt. Let B; be a collection of ideals of O, prime to af, that is in bijection with Gal(K (f)/K)
under the Artin map. Furthermore, recall that ¢ g(q) is a generator for q. By Proposition the natural map
OF — (Ok /p"tf)* is injective. We may thus appeal to Corollary to see that

Ngar/k: mn(qr) = H Pp e/ p(EWr(pma) Q)
ceG

IT 1] ©r.e@e®)F+Q)

occG beDBy

= I ©we(va) + du(@)Q) K0/ 07

beB;

= q)A,u(wE(q)wE(pnqt)_lg)1_((K(pnft)/K)7q)7l

1-((KE /K),a)~t

=T (t>

Where in the last equality we used Proposition m to see that @ o(Yr(p"t) ") is a global unit in K (E[p"t])
after which we applied the consistency property of the Artin symbol ((K(p"fr)/K),q)|x: = ((K;/K),q). The
second relation follows in exactly the same fashion using the first case of Corollary rather than the second. [

3.5 The p-adic ¢-function

Our final task of this chapter shall be to determine the nature of the ®-function locally. In particular, we will

show that at primes of good reduction p, ® is an element of Ok ,[[Z]]*.

Assumptions. We continue to use the assumptions from the last section. Furthermore, we let p be a finite prime of

K prime to 6f and we introduce the constraint that the auxiliary ideal is also prime to p. Recall that E is the formal
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group associated with E, 2(Z),y(Z) € Ok p[[X]] are the formal coordinate functions and @Wg(Z) € 14+ Z0k ,[[X]]

is the formal differential.

Definition 3.5.1. We define the derivative operator on K,((X)) to be

__1 d
T op(2)dz

The following lemma will show us that the above notion of the derivative operator is the correct one to adopt.

Lemma 3.5.2. The derivative operator induces a commutative diagram

K(2(2),y(2)) — Ky((2))

> »

K(2(2),y(2)) — Kp((2))

z

a.‘p_

Proof. We have the following diagram with first two squares commuting
¢'(2)) — K(E) —— K(2(2),y(2)) — K,((2))
/

K(p(2),
| | e
K(p(2),9'(2)) — K(E) — K(2(2),y(2)) — K;((2))
which is obtained by identifying the coordinate functions in the analytic, algebraic and formal settings. Substituting

the Weierstrass coordinate functions into the Weierstrass equation yields the relation
©'(2)% = 4p(2)* + dap(z) + 4b

Differentiating this relation gives p”(z) = 6¢p(z)% + 2a. But this relation also holds in K, (p(2), ¢'(z)) so it suffices
to prove that D(z(Z)) = 2y(Z) and D(y(Z)) = 3z(Z)? + a. Indeed, we have

D(a(2) = 202 a(2) = 24(2)
Similarly,
DUA(2) = 5211 (2) = 20(2)D(u(2)

However, on the other hand we have
D(y*(Z)) = D(z*(Z) + ax(Z) + b) = 62*(Z)y(Z) + 2ay(Z)
whence D(y(Z)) = 32(Z)? + a as desired. Hence the right hand square in the above diagram also commutes. [J

Theorem 3.5.3. Fiz an embedding of K into K, and let ®, o be the image of ®g o under the induced embedding
of K(x(Z),y(Z)) into K,((Z)). Then ®, q € Ok p[[Z]]*. Moreover, for all k € N>q

D¥log(®p.a(2))],_, = 12(=1)*""(k — 1)!f*(Na — wE(a)’“)Q—’“L(zTE’“, k)

z=0

Proof. Let O be the ring of integers of K,. It suffices to show that ®, , € O[[X]]*. Indeed, by definition of
the chosen embedding, we have that @, , € K,((X)) so from the claim we would then be able to deduce that
Dpa € Ox p[[X]]*

Let F' be an Og-generator of E[f] and B; a collection of ideals of Ok, prime to af, which is in bijection with

Gal(K (f)/K) via the Artin map. Let @ € E[a]* and consider the factor (¢g(b)F + P) — z(Q) in the formula for
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Og o(P). The addition law on E gives

(y(P) — y(¥e(b)F))?
((P) — z(¢yp(b)F))?
Now, g (b)F is not in the kernel of reduction modulo p and so Proposition implies that vy (z(¢Yg(bF))) >0
and similarly for the y coordinate. Moreover, Part 2 of Lemma shows that v, (2(Q)) > 0. We now switch

2(Yp(bF) + P) —2(Q) = —z(P) = 2(yp(b)F) — z(Q)

to the formal perspective by replacing z(P) and y(P) with the formal Laurent series 2(Z),y(Z) € Ok ((X)).
By definition of these series, we have that z(¢g(0)F + Z) — z(Q) € O[[X]]. Evaluating this at Z = 0 yields
z(¢E(0)F) — 2(Q) which is an element of O* by Part 3 of Lemma [3.1.4]

Recall that p { af and so A(E),a € O . Hence

Oy o(2) = a”HPIAE)BIN T (2(gp(0)F + 2) —2(Q)°
bEBf
QEE[d]"

The second assertion follows immediately upon combining Proposition [3.4.6] with Lemma [3.5.2} O



Chapter 4

Euler Systems

Euler systems were introduced by Kolyvagin in his paper [Kol90] in order to place bounds on the ideal class groups
of certain number fields. More concretely, he used the Euler system of cyclotomic units in number fields of the
form F(p,) to bound the ideal class group of F. In |[Rub91|, Rubin was able to use Kolyvagin’s method with
the Euler system of elliptic units to bound the ideal class groups of abelian extensions of an imaginary quadratic

number field.

In this chapter we shall define Euler systems in enough generality to encompass both the cyclotomic and elliptic
cases. We will then go on to demonstrate properties about these abstract Euler systems which we will then use
to construct certain principle ideals in abelian extensions of our base field. We will then show how these principle
ideals can be used to bound ideal class groups. This theory forms another key part of the proof of the Coates-Wiles

Theorem and we shall make heavy use of it in the sequel in order to calculate certain Selmer groups.

4.1 Axiomatising the norm-compatibility relations

Our goal in this section shall be to provide an axiomatic framework for Euler systems. We aim to capture, as
much as possible, the behaviour that both the cyclotomic and elliptic units exhibit. In particular, we would like
for our abstract Euler systems to mimic the norm-compatibility relations as seen in Proposition We shall
introduce the so-called universal Euler system of particular number fields K which is an object from which all

Euler systems on K can be constructecﬂ

Assumptions. Throughout this section, we shall assume that K is a number field. Let p be a finite prime of K
lying above the rational prime p and define R* to be the collection of all square-free ideals of O that are prime
to both p and the so-called exceptional ideal e. We shall use q to refer to a prime ideal in R¢. If v,s € R¢, we
shall write t/s to mean the ideal of R* given by dividing t out by the primes dividing s. Finally, except in cases

of ambiguity, we shall simply write R = R°.
Definition 4.1.1. We define a p-system of K to be a tower of abelian extensions
K=KyCK, C--K,C---

together with abelian extensionsﬂ K} /K, for every n € N>g and v € R such that we have the following diagram

of field extensions

1This is a slight exaggeration - we will be able to construct all Euler systems that are of immediate interest. The general theory
of Euler systems is vast and far outside the scope of this essay. The interested reader is encouraged to see Rubin’s book [Rub14].
2Note that we are taking the convention K}l = Kn.

29



4.1. Axiomatising the norm-compatibility relations 30

T
K3

i
K /Kf/qu
v

Ky Kt Ko

Py

K Kt

|

K

qr
K2

and satisfying Gal(K} /K) = (O /p"t)* and for all primes q # p, the extension KJ3°/K} has degree Nq — 1, is

totally ramified above primes lying over q and unramified everywhere else.

For the rest of this chapter, unless otherwise stated, we fix an arbitrary p-system of K. We observe that, using

the notation above, we have an exact sequence

1 — Gal(K}/K,) — Gal(K}/K) — Gal(K,,/K) — 1
So that G, = Gal(K} /K,) = (Ok/t)*. Applying the Chinese Remainder Theorem we obtain a commutative
diagram of isomorphisms

Ge —— Iy

l |

Ok /) — (O /a)*

Definition 4.1.2. Let ¢ € R be a prime ideal. We define the g-norm operator in Z[G4] to be

Nq:ZO'

oeGy

Moreover, if v € R* is any ideal then we also define the r-norm operator in Z[G,] to be

Ne=]]N, €
qlt

Definition 4.1.3. Let g € R be a prime ideal. We define the g-derivative operator in Z[G,] to be

Moreover, if t € R® is any ideal then we also define the t-derivative operator in Z[G,] to be

D, =[] Dy

qle

Lemma 4.1.4 (Telescoping Identity). Let q € R be a prime and oq a generator of Gq. Then

(0 —1)Dg=Nq—1—N,
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Proof. Expanding the definition of Dy, we have that

Ng—2 Ng—2
(0q —1)Dgq = Z iaé’H - Z iJZ = 03 — 04— 202 - 20?I +---+(Ng—2)+ (Nq— 2)(7qu_2
i=1 i=1

Ng—2
=Nq-2- ) oi=Nq-1-N, O

i=1

We now make a series of definitions in order to construct Euler systems. In particular, we shall obtain a
universal Euler system via the direct limit of individual so-called Euler modules. These Euler modules, together
with the connecting homomorphisms of the direct system that they form, will provide an axiomatisation of the

norm-compatibility relations manifest in elliptic units.

Definition 4.1.5. Given n € N and v € R, let z,, . be an indeterminate. Let Y;, . be the free Z[Gal(K} /K)]-
module on the indeterminates { z,, s | § | t} and Z,, ; the Z[Gal(K},/K)]-submodule of Y, ¢ generated by the rela-

tions
1. G./s acts trivially on the indeterminate w, s.
2. If s | v then Nqzp qs = (1 — (K5/K),q) ") zps
We define the (n,r)-Euler module to be the Gal(K /K)-module

Xn’t = Yn7VZn T

Definition 4.1.6. Consider the directed set I = N x R with partial order < given by the usual ordering on N

and ideal divisibility on R¢. For every (n,s) < (m,t) we define a homomorphism of Euler modules

P Xng = X
Tt — NK;n/KfL Tn,t

for t | 5. Clearly, @EZE; = id and @81;;) = 90%;2) o apgﬁ’)ﬁ) for all (I,¥) < (m,s) < (n,t) and so the X,, . form a

directed system with respect to the connecting homomorphisms . We define the universal Euler system with

respect to the fixed p-system to be

with the direct limit taken with respect to the .

Definition 4.1.7. We define an Euler system of K to be a Gi-equivariant map

n: lim X, —|JK
(n,v)er n,t

such that n([X,, ¢, Zn¢]) is a global unit for all n € N> and t € R°.

Proposition 4.1.8. Specifying an Fuler system mn : hﬂ(n ver Xpe — Ljnt[(;>< s equivalent to specifying a

collection of global units
{n(n.v) € K [Napre R}
such that

1. Niexe /e 1(n, qt) = n(n, )1~ (/B0
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2. Nk ke m(n+1,t) =n(n,x)

Proof. First suppose that we are given an Euler system 7 : hﬁ“(n,r)el Xne — Un’t K™, Let [Xy,¢, Tne] be an
equivalence class in the universal Euler system. It is clear by the definition of i that the image of this equivalence

class is a global unit in K so it suffices to demonstrate the norm-compatibility relations. By definition of the

(n+1,v)

(n0) (Zn+1,e) and so

direct limit, we have that x,, . ~ ¢
[Xn,ta xn,t] = [Xn-i-l,n NK:L-}—l/K:I xnl,t]
Appealing to the Gi-equivariance of  we then have that
n(n,v) = n([Xn,e, Tne]) = N([Xnt1e, NK;H/K,‘; Tnye))

= NK:L+1/K7§ TI([XTH-LI‘; Z"n,tD

= Ng:  /xyn(n+1,7)

Now suppose that q € R¢ is a prime ideal that does not divide v € R. Gi-equivariance again shows that

Nipar/kx n(n,qr) = Ngar/k: N([Xn,qes Tnge]) = N([Xn,qes Nyt ks Tn,qel)

n([Xn,qtv qun,th
(

([ Xnqe, (1= (K3 /K),0) ™ )m.e])

— (K5 /K),0) " n([Xnqe Tne])

= n(n’t)l_((K:L/K))q)71

Conversely, suppose that we are given a collection of global units
[n(n,¥) € K | Naye e R}
satisfying the above conditions. Define a map
n: lim X, — LJK,‘;X
(n,v)erl n,t
by n([Xn,c, Tnc]) = n(n,t) and then extending linearly. By construction, n([X, ¢, Zn,:]) is & global unit for all

n € N> and v € R® and is G g-equivariant by linearity. This map is clearly compatible with the structure of the

universal Euler system and so n is an Euler system. O

Remark. From now on we shall suppress the use of the equivalence class in the argument of the Euler system and

simply write n(zy ) or n(n,t).

We will now show that our usual notions of the cyclotomic and elliptic units are subsumed by the definition of

an Euler system.

Example 4.1.9. Let K = Q,¢ = 1 and (p) = p for some rational prime p. For every integer m > 1, let (,, be a
primitive m! root of unity in Q. We define a p-system on Q by setting K,, = Q((,») and for every integer r € R*
we set K] = K, (¢) = K((pnr). By the elementary theory of cyclotomic fields, this is indeed a p-system since
Gal(K] /K) = (Z/p™r)* and for every rational prime g # [ we have that the extension K" /K is totally ramified
above primes of K lying above ¢ and unramified everywhere else.

Now define n(n, r) = (pn, —1. This is indeed guaranteed to be an Euler system by the usual norm-compatibility

relations for cyclotomic units.
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Example 4.1.10. Let K be an imaginary quadratic number field and E an elliptic curve defined over K with
complex multiplication by Ok . Let ¢ = 6af where a <O is an auxiliary ideal prime to 6f where f is the conductor
of the Hecke character U g attached to E. We define a p-system on K by setting K,, = K(FE[p"]) and for allt € R
we set Kt = K,(E[t]) = K,(E[p"t]). This is guaranteed to be a p-system by Theorem [A.7.9] Let A be the lattice
associated to F and Q2 € C* such that A = QOg. Then by Proposition m

n(n,v) = 2ra(ve(p) Q)
is an Euler system of K where ® is the ®-function of F.

Remark. We note that by a result of Yin (see [Yin00]), our theory will be proper only to Q and imaginary quadratic
number fields. Indeed, we shall soon restrict R to ideals v such that every prime dividing v splits completley in
K,. Yin showed that only Q and imaginary quadratic number fields possess abelian extensions K1/K,, for such

a prime q such that
1. K3/K is abelian.
2. [K9: K,] =Nq—1.

3. K1/K, is totally ramified above primes lying over q and unramified everywhere else.

4.2 Properties

Assumptions. We continue to use the notations and assumptions from the previous section. Furthermore, if
n € N>q, and M is a power of p, we define R, ps C R to be those ideals v such that for every prime q|tv we have
that q splits completely in K, /K and Nq—1=0 (mod M).

Proposition 4.2.1. Let v € R, be an ideal. Then X, . is a free Z-module of rank [K} : K|. In particular,

Xn,e has no Z-torsion.

Proof. We may assume, without loss of generality, that G is not trivial for all primes q | t. Indeed given such a q
with Gy trivial, let ¢ = t/q. Then K = K! and X, = X, ..

Now for every prime q | v and divisor s | v define

By = Gal(K,,/K)

By =Gq—{1}
Bsanq
qls

We claim that B = U5|t Bsxy s is a Z-basis for X,, ;. To this end, we first observe that Bq U { Ny } is a Z-basis
for Z[Gq). Indeed, Z[G4] has rank |G4| as a Z-module and | B U { N4 }| = |G4| also. Furthermore, the elements
of BqU{ Ng} are Z-linearly independent as they are a collection of field automorphisms contained in Gg. From
this it follows that for all s | ¢

H By U{N,}

als
is a Z-basis for Z[G,]. By induction on the number of primes dividing v, we then see that X, . is finitely generated

over Z by B. Indeed, if t = 1 there is nothing to prove so assume that g divides v and write v = gqs. By the
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induction hypothesis, X, 5 is finitely generated over Z by Utl5 Byt Since Ngzp g =1 — (K, /K),q) 21, it
follows that X, 4 is finitely generated over Z by Us| a Bsz, s and so the claim is proven.

To see that X, . is infact a free Z-module we first observe that

Bl <> [Bs| =[] 1Bs + 1] =[] |Gl = [K}, : K]

sle qlv qlr
Conversely, we claim that X, . has rank at least [K} : K| as a Z-module. The Proposition would then follow

immediately.

Consider the homomorphism
¢ : Y, — Z[Gal(K] /K)]

s I M1 (|Gq| - (K8/K)q) " — mog;')

ql(r/s) qls

for s | v which is trivial on Z,, .. This then induces an homomorphism
DX, ®z2Q — QGal(K} /K)]

It can be shown using the theory of Galois characters that ® is surjective (see the proof of |[Rubl4l Proposition

3.1]) so that
rankz (X, ) = dimg(X, ®z Q) > [K}, : K] > |B|
as desired. O

Proposition 4.2.2. Let v € R, n be an ideal. Then Dyxy, . € (Xpo/M X, ).

Proof. Given a prime q | t, let o4 be a generator of G4. Since the oq generate G., it suffices to show that for all q
we have (04 — 1)D:&p .« € M X, .. We shall prove this by induction on the number of primes dividing v. If v =1
then the claim is trivial. Now suppose that vt = gs for some prime q € R, 5. Then by the Telescoping Identity
M14 we have that

(0q —1)Dip e = (0q — 1)DgDsy, o
= (Nq - l)szn,t - Nquxn,s

= (Ng—1)Dszp . — (1 - ((K;/K), q)_l)szn,s

Now, ((K2/K),q)"! € Gs whence (1 — ((K5/K),q) ') Dsxpn s € M X, s by the induction hypothesis. Moreover,
Nq—-1=0 (mod M) and so it follows that

(0q —1)Dizp =0 (mod MX, )
as required. O

The following congruence relation was part of Kolyvagin’s original definition of an Euler system. In the following

proof, Rubin showed that it in fact follows from the axioms that we have given above.

Proposition 4.2.3. Let i be an Euler system and q € R a prime. Suppose that k is the largest power of p dividing
Nq — 1 so that Nq — 1 = dp* such that (d,p) = 1. Given n € N>; and v € R we have

n(n, qv)? = n(n, ) WS/ 07 (0d Q)
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for all primes Q lying over q.

Proof. Suppose that m > n and write G = Gal(K3!/K3'). Given a prime 9 of K1 lying over q, let Dy be the
decomposition group of q in G. In other words, Dy is the intersection of G' with the decomposition group of g in
K. Fix a set D’ of representatives for the factor group G/Dy and let Np, = E%Dq vyand Np =3 g7 By
construction we clearly have that Np Np: = Z%G .

Now, every prime lying above q in K, ramifies totally in K3 and so the Galois group G is equal to the
decomposition group relative to £ and also the inertia group relative to . Reducing the left-hand side of the

first norm-compatibility relation, we then have that
N /o n(m, qe) = n(m,qv)N9~" (mod Q)
On the other hand, we claim that

— (Kt -1 ¢ . B
n(m,t)l (K, /K),q) E(n(mvt)((KH/K),q) )Nq 1

Indeed, this follows immediately by starting with the definition of the Artin symbol, dividing through by n(m,t)
then applying the inverse of the Artin symbol.
Let f be the inertial degree of q in K} /K. Since the Artin symbol ((K}/K),q) is a generator of D, we have

the following reduction relation

[Dq -1

Np, = > (N/)' (mod 9)

=0

If we denote this reduction by r then reducing the second norm-compatibility relation modulo £ yields

n(n,t) = n(m, )" M0 = n(m,0)"™> (mod Q)

n(n, qr) = n(m, qr)NPa Vo' = n(m, qr)"™V>"  (mod Q)

It is immediate that r = [Dy| (mod Ng —1). Letting m — oo, Dyq becomes arbitrarily large so we can always find

an m such that p*|r. Fix such an m > n and write r = p¥s so that

m, qu)) V> " (mod Q)

t)(qul))sND/

|

T 3 3 35
E
Rl

(
(
n(m, v)(Kn/K)a) 1) (Na=1)sNp
(m, t)Nor)sd((K /K).a) 7

:'r’(n7t)d((K:L/K)aq)7l D

4.3 Constructing Principal Ideals of p-systems

Our next task shall be to employ Euler systems in order to construct certain principal ideals in our p-systems. In
the next section, we will then go onto use these ideals as relations in order to place bounds - and in some cases

annihilate - certain parts of the ideal class group of Kj.

Assumptions. We continue to use the notations and assumptions from the previous section. Furthermore, we

assume that the base field of our p-system has class number IEI Finally, fix an integer n > 1 and an ideal

3Recall that the only interesting cases are when the base field is Q or an imaginary quadratic field K. The former clearly has class
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S Rth.
Definition 4.3.1. Let 1 be an Euler system. We define a map

et Ge = Kp(v)*

<(0’ — 1)Dtxn,t>
con|

which is well-defined by Proposition [4.2.2

Proposition 4.3.2. Let i be an Euler system. Then cy . s a 1-cocycle.

Proof. To ease notation, write ¢ = ¢y .. By definition of a 1-cocycle, we are required to show that for all o, 7 € G
we have ¢(07) = ¢(0) +¢(7)?. Note that by Proposition[£.2.1} X, . has no Z-torsion and so, in particular, we have
canonical M*"-roots of n((c — 1)Dyxy, ). It then follows that,

or) =7 ((o—lﬂ)j?)

(67 +0—0—1)Dexp
" M

" ((7’ — ljlet:cm)" + ((a — 1]34Dtxm)

=c(o) +c(1)°

as claimed. O

Corollary 4.3.3. Let 1 be an Euler system. Then there exists a B, € K5 unique modulo K¢ such that

(@) P
pM

Proof. Since G, is independent of n we observe that, by [Hilbert’s Theorem 90} H'(G., K}) is trivial. In particular,

€ K}

the 1-cocycle ¢ = ¢y, defined above is also a 1-coboundary. We can thus find 3. € Kflx such that ¢(o) = ﬂffl
for all 0 € G,. We first claim that such a g, is unique modulo K,*. Indeed, let 8. be another element of K}, such
that c(o) = B°~! for all ¢ € G,. Then (B./B.)° = (/B whence ./, € K and so 3. = 3, (mod K)¢). We now
claim that such a (3, satisfies the assertion of the Corollary.

To this end, fix an automorphism ¢ € G,. Then

(n(xn,r)Dt) _ 7l($n,t)wjt _ 7I(~Tnm)UDt _ n(xn,t)Dr
o 531 = —
T

peM (ﬂrn(xn,t)(gil)D”/M)M a I

as desired. O
Definition 4.3.4. Let 1 be an Euler system. We define a map

KX
KM Rpm — "/(K;)M

o [

where 3, is the element of K} as provided by the previous Corollary.

Our motivation in defining such a map &, a(t) is that we will be able to give a simple description for the ideal

that it generates in terms of the primes dividing v. In particular, we will construct a map ¢4 which will describe

number 1 and we may assume the latter has class number 1 as is the running theme throughout this essay.
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the g-part of the ideal generated by iy, ar(t) when q divides t. In order to formalise this, we first define some useful

notations.

To ease the exposition, we denote L = K,,. We let I}, be the group of fractional ideals of L written additively

as follows

L= @ za

Qemi>
Furthermore given a finite prime q of K, we let 9 = I} be similarly defined, with the direct sum ranging over the
finite primes 9 of L lying above q. If € L* let (x)4 denote the projection of (x) to I, [z] the projection of (z)
to I /M1y, and [z], the projection of (x) to I9/MI9.

Proposition 4.3.5. Let q € Ry, v be a prime of K and denote © = Or/qOp. Then there exists a Gal(L/K)-

equivariant homomorphism

g : LX/(LX)M - Iq/MIq
which induces an isomorphism

g : DX/(DX)M - Iq/M[q

Proof. Let Q be a finite prime of L lying above q and 9 a prime of K lying above 9. We recall that q splits
completely in L/K and that Q totally ramifies in L9/L. Denote by g a lift of the generator o4 of G4 to Gk so

that oq is contained in the inertia group of Q.
Our first task is to construct a homomorphism
b 12/ o = Ly
(L3)
To this end, define an isomorphism
N/
VAl Y

[(L] — (ﬂ_a/]\/[)lfag

where we understand a to be the least positive representative of [a] and 7 is a generator of q. Now choose a
Frobenius element 7 in the Artin symbol ((L/L), Q). Recall that 7 is an element of the the decomposition group
of Q in L/L which is isomorphic to the Galois group of the extension of local fields La/Lg. Furthermore, any

such 7 is conjugate to the other elements of the Artin symbol. We define
oa: L5 =Dz
to be the image of 7 under the composition
Gry — Hom(LY, p) — Hom(LS, Z/MZ)
o (w2

where the second map of hom-sets is the one induced by the isomorphism . This is well-defined as it is clearly
independent of the choice of Frobenius element 7. Moreover, ¢¢ is trivial on (LS)M S0 ¢ descends to a homo-

morphism

$a :LS/(LE)M =%z
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We can give an explicit description for this map as follows. Let a € LS and let 9 denote the maximal ideal of the

ring of integers of Ly. Since oq reduces to the trivial automorphism modulo Q we have that
(al/M)((f/L),Q)—l = (Bl/M)l—UQ (Il’lOd 5) (41)

for some 8 € QX. Let a = vq (). Then

(al/M)((Z/L),Q)fl _ (ﬂa/M)lfm (4.2)

and so ¢q(a) = a. We next use this to define a map
x q
Oq L /(LX)M — I/qu

o — Z (;5,3(01)5:2

Q/q

Finally, this then induces a well-defined isomorphism
x q
bq 9 /(DX)M — I/qu

Gal(L/K)-equivariance then follows immediately from the definition upon recalling that Gal(L/K) permutes the
primes 9 lying over g. O

Theorem 4.3.6. Let i be an Euler system and q € Ry, p a prime. Then

Gq(rn,m(c/q)) ifale

(Km0 (¥)]q = 0 ifate

Proof. First suppose that q { t. Then by the definition of the p-system, we have that q is unramified in L*/L.
Hence for all primes Q' of L* lying above primes Q/q in L we have that va(kn a(t)) = var(kna(t)). It then
follows that for all Q/q we have va(kp a(t)) =0 (mod M) where we have used the fact that &, a(t) is a global
unit times an M'" power in L**. Therefore, [k 1 (t)]q = 0.

Now suppose that q | v, and write v = gs. Let Q be a prime of L lying above q and og a lift of o4 so that og
is contained in the inertia group of Q where 9 is a prime of L lying above Q. Furthermore, let k be the highest
power of p dividing Nq — 1 so that Nq — 1 = dp* with (d,p) = 1. We claim that

(K"L’Jw(t)d/M)lfag = (KmM(s)d/M)((LS/L),Q)—l (mod Q/)

where 9’ is any prime of L* lying above . By the definition of the map (in particular, Equations and ,

we would then have that

dpa (kin, a1 (5) = dvg (kn, 1 (t))

Since d is prime to M, it would then follow that ¢q (Kn,am(8) = va (Kn,am(¥)) which proves the Theorem.

To deduce the claim, we first expand the definition of k,, /. We have that

)Dr )D5

n(xn,r n(mn,s

Hn,M(t) = T7 Kn,M(5) - T (43)
for some B, € L*™ and 3, € L** satisfying
7 =n((0 — 1)Dene /M), B = n((0 — 1) Do /M) (4.4)

for all o € G and o € G, respectively. To ease notation, let 74 = ((L°/K),q) and 7q = ((L*/L),Q). We now



4.4. Bounding the Ideal Class Group of K(E[p]) 39

observe that

(’in,M(t)d/M)l_UQ = ((TI(SUn,t)D‘)I/M/ﬂt)d(l_aﬂ) (by Equation
= 53((7“_1) (mod ') (since () is a global unit)
=n((0q — 1) Dy o /M)? (Equation [4.4)
n((Ng— 1 — Nq)Dszp /M)d (Lemma

1((Ng = 1) Do/ M)*n(75" = 1) Doy s/ M)"
(n(xn,r) ) (Na— 1)/M/5d(1 i) (Equation

= ((2nc)P") P 1(Ngq— 1)/M/Bd(1 o)

= (M(wp,e) Do) P00 /M/ﬁ (mod Q')

= n(xn,t)Dsd(l_Til)/M/ﬁg(l_Tg ) (mod ') (Proposition

(M(p,c) Pe /B /M )d0 =73

0 (8)YM)™2 71 (mod )

)

thereby proving the claim. O

4.4 Bounding the Ideal Class Group of K(E|p])

After constructing the machinery of abstract Euler systems, we now look to applying our theory in the case of
p-systems coming from the running theme throughout this essay: an elliptic curve with complex multiplication. In
particular, we will show how the results from the previous section allow us to place bounds on the Galois-eigenspaces
of a certain ideal class group. This will form yet another key component of the proof of the Coates-Wiles Theorem.
The interested reader is encouraged to view Rubin’s appendix in [Lan90] for the case of cyclotomic units and the

p-system defined over Q.

Assumptions. Throughout this section, we shall assume that E is an elliptic curve defined over an imaginary
quadratic number field K with complex multiplication by O so that K has class number 1. We fix a prime p of
K prime to f, a <O an auxiliary ideal prime to 6f and we fix the p-systemof K as defined in Example As
before, R = R;, ), will denote the ideals in R whose prime divisors g split completely in K, /K and such that
Nqg—-1=0 (mod M).

Furthermore, we write L = K; = K(E[p]), pr the group of roots of unity in L and Ly = L(pps) where pas
are the M'" roots of unity in an algebraic closure of L. We have that G = Gal(L/K) so that G is cyclic of order
p—1 or p? — 1, depending on how p ramifies in K. In order to simplify the exposition, we shall assume that p
splits completely in K so that in fact |G| = p — 1. This restriction is not too severe since, as we shall see in the

sequel, it turns out that this case is enough to deduce the Coates-Wiles Theoremﬂ

Consider all irreducible Z,-representations of GG. Since p splits completely in K, all such representations are

1-dimensional and so, in particular, they are in one-to-one correspondence with the elements of the character group

4The reasoning for this restriction is that if |G| = p? — 1 then there exist irreducible Z,-representations of G of dimension 2 which
do not correspond to elements of the character group of G (in other words, their characters are not linear characters).
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G. By Proposition we thus get a decomposition of the group ring

Z,[G) = P R,

XE@
where each R, is isomorphic to Z,. If M is a Z[G]-module then we shall write MX for (M ®7Z,)X, the x-eigenspace
of the p-adic completion of M.

Lemma 4.4.1. Let Cp, be the ideal class group of L and M a power of p. Then we have injections
Hom (Cr,Z/MZ) — Hom(Gyp,,,Z/MZ)
L J(L)M — Ly /(Ly)™
Proof. Let L(1) be the Hilbert class field of L and ¢ : Gal(L(1)/L) — Cr, the inverse of the Artin map. Then the
composition

o —— olpq) —— ¢(alr))
induces an injection
Hom(Cr,Z/MZ) — Hom(Gr,Z/MZ)

Now the kernel of the natural map Hom(Gpr,Z/MZ) — Hom(Gyr,,,Z/MZ) is Hom(Gal(Ly/L),Z/MZ) so it
suffices to show that there does not a non-trivial homomorphism Gal(Ly;/L) — Z/MZ. In other words, we need
to show that there does not exist an unramified p-extension of L in Lj;. We observe that the p-part of Gal(Lys/L)
is Gal(Lar/L(pp)). But this extension is totally ramified at all primes of L(u,) above p and so the first injection

is proven.

To prove the second injection, note that Proposition [A-2.4] provides us with isomorphisms
L /()M = HY(L, pr)
L /(LM = H' (L, )
It hence suffices to show that the cohomological restriction map
HY(L, par) — H' (L, pvr)

is injective. We note that the kernel of this map is H'(Gal(Lys/L), pas). But implies that this is
trivial since Gal(Lys/L) is cyclic, acts faithfully on pps and p > 2. O

In the previous sections we defined R = R, s to be the collection of all ideals in R whose prime divisors q
split completely in K, and satisfy Ngq —1 =0 (mod M). Having proved many useful results with such ideals, we
must ask ourselves whether any actually exist. The answer is a resounding yes (at least in the case n = 1) and
the following Proposition will provide us with a healthy stock of primes in R = R1,3. We will then go on to use

these primes to place bounds on the size of C}.

Proposition 4.4.2. Let k € L*/(L*)™ and v a non-trivial homomorphism in Hom(Cr,Z/MZ). Then there

exists a prime ideal q € R1,p and a prime Q of L lying above q such that



4.4. Bounding the Ideal Class Group of K (E[p]) 41

1. []q =0 and ¥([Q]) # 0 where [Q] is the class of Q in Cr.
2. For all d € Z,d¢4(r) = 0 if and only if k% € (L*)M.
Proof. Consider the Kummer map
L* ()™ — Hom(GL,, per)
y = (0= ()7

and denote by s the image of k£ under this map. Let e be the order of x in L*/(LX)™ and identify ¢ with its
image in Hom(Gp,,,,Z/MZ) under the injection of Lemma Consider the two subgroups

Ha :{’YGGLI\/I |¢(7):O}
Ho={~v€ Gy, | »(7)iskilled by t <e}

It is immediate from the facts that ¢ # 0 and Hom(C,,Z/MZ) injects into Hom(Gp,,,Z/MZ) that H; is a proper
subgroup of Gr,,. Moreover, appealing to Lemma shows that # is also a proper subgroup of Gr,, since

injective homomorphisms preserve order. We may thus choose a v € G, \{ H1 UHz2 }.

Now, fix a finite Galois extension IV of L containing Lj; and such that » and 1 are trivial on G. By the

[Chebotarev Density Theorem| there are infinitely many finite primes ¢ of K that are unramified in N and such

that the Artin symbol of q in N/K coincides with the conjugacy class of v|y. We are thus free to choose such a
prime q not dividing 6afp and such that [k]q = 0. Let Q be a prime of L lying above q. We claim that q and Q

are the desired primes of the Proposition.

By construction «y fixes L(pt,,) so by Proposition p splits completely in L(g,). Therefore, a foritiori, p
splits completely in L whence q € R.

To prove the second assertion, observe that the inclusion
Hom(Cr,Z/MZ) — Hom(Gr,Z/MZ)

of Lemma identifies 1([Q]) with ¥((L/L), Q) = ¥ (v). Now, v & H1 and so 9 ([Q]) # 0.

Moreover, since v & Hs, it follows that (,%1/1‘/1)(@/’:)’9)_1 is a primitive e'? root of unity. Hence s has order

e¢(Ng — 1) modulo 9 and so & has order e in
(OL/90L) /((OL/q0L) )™
By Proposition ¢q is an isomorphism on this factor group whence the second assertion follows. O
Lemma 4.4.3. Let x € G be a non-trivial character. Then
% X
( L /uL> =~ R,
Proof. We first note that since K is totally imaginary, L must be as well. Hence L admits [L : Q] = 2[L : K] = 2|G|

pairs of complex conjugate embeddings into Q@ and no real embeddings. By Dirichlet’s Unit Theorem, we have

that
o5 ~ 7|G|-1
[/H' 7|Gl

Since Q[G] = QI!, we have a short exact sequence of Q[G]-modules
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0— (O%L) ®2Q — Q[G] — Q — 0

Since Z, is a flat Z-module, tensoring with Z, will preserve this exact sequence. We may thus pass to the

x-eigenspace to deduce the assertion of the Lemma. O

We now arrive at the main Theorem of this Chapter. Effectively, with this result under our belt, the morale of
Kolyvagin and Rubin’s theory can be phrased as follows: the machinery that we have constructed takes as input
an Euler system corresponding to a p-system of K and an irreducible Z,-representation x of G' and outputs an
upper bound on the y-eigenspace of the ideal class group of L. The proof of this Theorem is rather lengthy but
the main idea will be to use Proposition to construct a sequence of primes q of K and primes /q of L for
which the images in C} of their classes in Cy, generate C¥. The classes of these primes will give rise to interesting

relations in C} which will allow us to deduce an upper bound on the size of |C} |.

Theorem 4.4.4. Let m be an FEuler system and U = U, = <;¢L,n(1,(9K)>ZP[G]. If x is an irreducible Z,-

representation of G then

X X
|54

Proof. First suppose that x is the trivial character. Let P be the p-part of C;,. We may identify C; ®z7Z, with P

considered as a Zj,-module with module structure given by the scalar multiplication

(z aipz) S s
i=0 i=0
which is well-defined since P is annihilated by p™ for sufficiently large n. P clearly also has a natural action of G

so it is infact a Z,[G]-module. Since x is the trivial character, the x-idempotent is
1 -1
Ey = T o
X |G| Z

which is simply the norm from L to K map (up to a constant). Hence PX is in fact that p-part of Cx. But Cx is

trivial and so we must have that |C} | = 0.

Now suppose that x is not the trivial character and denote
w54
Moreover, let Oif(,lj and iz, denote the images of O, U and py, in L*/(L*)M. By Lemma m (@/ﬁ)x is
a free R, /M R,-module of rank 1. Hence for some ¢ | M we have
(le(/u) . @X/Hx ~ Ry, R,

Now let £ € (’)7;{)( be an R,-generator of @X/ﬁx so that & has order M in L* /(L*)M. Then ¢ € U*. Fix a root
of unity ¢ € ™ so that
€' = ¢ (kL (0K)Y)’

for some a,b < M where we have used the fact that xq /(Ok) is the image of (1, Ox)X in L*/(L*)M. Let t,
denote the order of k1 p(Of)X. Then £ = (% so that M |tot.

Henceforth, given v € R, we write x(t) for r, pr(t) € L*/(L*)M. Label the elements of Hom(CY,Z/MZ) as
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U1, ...,Y,. By Proposition [4.4.2] we inductively define a sequence of prime ideals q1,...,qx € R of K as follows.
Suppose that we have constructed primes qq,...,q,—1 for i — 1 < k. Let tv; = ngi q; where we understand
qgo = Ok. We then define q; € R to be the prime of K generated by the Proposition using the homomorphism ),
and the element x(t;_1)X. If we let 9Q;/q; be the primes of L lying above the g; provided by the Proposition and

¢; the class of £; in Cr then we have the following two properties:

1. Oéi(Ci) # 0
2. doq, (k(r;—1)X) = 0 if and only if (/{(ti,l)x)d

For all 1 <4 < k. We now claim that ¢, ..., ¢ generate C} as a Z,[G]-module. If this were not the case then let H
be the subgroup generated by the ¢; over Z,[G]. Then we would always be able to find a non-trivial homomorphism
¢ :CY /H — Z/MZ. Such a homomorphism would clearly be 0 on the ¢). On the other hand, we must have that
1 = 1p; for some 1 <4 < k so ¢(¢;) = 0 which contradicts the first property stated above.

Next, let s; for 1 < i < k denote the order of ¢} in CY /(c¢f,...,¢* ;) and ¢; for 0 < ¢ < k — 1 the order of

k()X in L* /(L*)M. We claim that ¢;_1 | t;. Observe that since R, is a free Z,-module of rank 1, we have
(s ef) s (e )] = [By t si Ry ]

By the fact that the ¢; generate C} it then follows that

k
1CEl= H[Rx Dl

i=1

By Theorem we have that [k(t;)X]q, = @q, (£(t;—1)X). Furthermore, the second property stated above, we

know that deq, (k(r;—1)X) = 0 if and only if (r(r;—1)X)¢ = 0. Hence [r(t;)X]q, has order ;1 in I /MI%. On the
other hand, d¢g, (k(v)X) = 0 if and only if (k(r;)X)? = 0 and so t;_1]t; as claimed.

We next claim that (¢;/t;—1)cX = 0 in CY /(cf,..., ¢ ). Since (r(r;)¥)% € (L*)M, we can choose z; €

L* /(L*)™ such that zZ-M/ti = k(t;)X(¢ for some ¢ € py, so that

(M> [zi)q, = [K(ti)X]q,

t;
and [z;]q, has order ¢;_1 M /t; in (19 /MI9)X. It is easy to see that ([% /MI%)X = R, /MR, . Indeed, we have an

isomorphism of Z[G]-modules

I — Z[G]
H ()% — Z €x0
oeG oeG

where £; is some prime of L lying above q;. By Part 1 of Theorem [4.3.6] and the previous discussion, it follows

that there exists a unit u € R; such that

t; ,
qz( (mod Iql,...,lq”fl,tiIL)
1—1

(%) = us
Since to|t; and (M/t)|to it follows that ¢; annihilates C} since M/t does. Projecting the above congruence to C},
we then have that (¢;/t;—1)c¥ =0in C} / (c},...,¢ ;) as claimed.
Hence for all 1 <i < k, s; divides (¢;/t;—1) so that

k
CLl= H[Rx D8l

i=1
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divides
ti i

{Rx : t’Rx} = [[lti-1Ry : t:iR\] = [toRy : tiRy]
1—1

k
= i=1

(2

Now, ¢ | M and M | tty whence [toR, : t; R, divides [R,, : tRx] = |(Of /U)X| and so the Theorem is proven. [

1

Corollary 4.4.5. Let n(n,t) = n2(t) be the Euler system of elliptic units with respect to an auziliary ideal a prime

to 6f. If x is an irreducible Z,-representation of G and 11 (Ok) & py ((OF)X)P then C} is trivial.

Proof. By Theorem [1.4:4] we know that

x X
el < | (%, )

where U is the Z,[G]-module generated by pr, and n1(Ok). Since (O )X is a p-group, the hypothesis 171 (Ok) &

1Y ((OF)X)? ensures that the factor group (OF /U)X is trivial. O



Chapter 5

The Coates-Wiles Theorem

Our goal is finally in sight; we now have all the tools required in order to tackle the proof of the Coates-Wiles
Theorem. Our plan of attack shall be as follows. We will define a homomorphism of the unit group of a completion
Ly of L = K(E[p]) for some prime P above p to E[p| which will provide us with the connection between the
non-vanishing of L(1,1) and the elliptic units. This connection, along with Corollary will allow us to
annihilate C}” where xp is the representation of G on E[p]. We will then show that we have an isomorphism
(Of )xe = (Ofm)’“f An easy application of the Chebotarev Density Theorem will then allow us to employ these
results, along with Corollary to annihilate the Selmer group swelr ))(E) whence the Coates-Wiles Theorem
will follow from the Mordell-Weil Theorem.

Assumptions. Throughout this section we shall assume that K is an imaginary quadratic number field and E/K

is an elliptic curve with complex multiplication by O so that K has class number 1. We fix the following objects

e A alattice in C such that E(C) = C/A via the analytic isomorphism & and 2 € C* such that QO = A.

(f) = f the conductor of the Hecke character ¢ 5 attached to E.

p a finite prime of K not dividing f lying above a rational prime p > 7 and P8 the unique prime of L lying

above p.

e M a power of p.

e The p-system of K given by K = K(F[p™t]) for some t € R = Riﬁw and denote L = K, G = Gal(L/K).

e 1 the Euler system of elliptic units with respect to an auxiliary ideal a < Ok prime to 6pf.
Proposition 5.1. There exists a G-equivariant isomorphism

v Elp] = (1+P0L3)/(1+P*Ory)
that induces a homomorphism
d: O}jm — Elp]

by composing the natural projection (’)E;13 — (1+BOL3)/(1+ P20 ) with the inverse of 7.

Proof. Since E has good reduction at p, Proposition implies that Ep] C F;(K,) € Ei(Ly). By Proposition
we have an isomorphism E[p] = (L) with E considered as defined over L. Restricting this to K, we
get an isomorphism E[p] = E[p]. We then define v to be the composition

Elp] Elp] = (1+R0Lp)/(1 + P20 )

P — —x(P)/y(P)

45
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To show that it is injective, observe that

-z z(P) 2
P e kery — cker(l+:) <— —= €PB-0O

Now, the proof of Lemma implies that v, (z(P)/y(P)) = (Np — 1)~! whence vy (x(P)/y(P)) = (Np —1)72

since the ramification index of p in L/K is 2. This is clearly less than 2 so we must have that P = 0.

Since |E[p]| = Np, the surjectivity of v will follow if we can show that (1 +BOL5)/(1 + P3O x) also has

cardinality Np. Indeed, the PB-adic logarithm map provides an isomorphism

(1+BOLp)/(1+B*OLyp) = POL g /B OLp = OL g /BOLp = Ok p/pOk p

where we have used the fact that p ramifies totally in L/K so that the inertial degree of p in L/K is 1. The
latter clearly has cardinality Np as claimed. The fact that v is G-equivariant now follows immediately from the

definition. O

Lemma 5.2. There exists a prime q of K not dividing 6pf such that Nq # ¥ g(q) (mod p).

Proof. Since p > 7, Proposition implies that F[p] C E(K). We may therefore choose a prime q of K not
dividing 6pf, such that [q, K(E[p])/K] # 1. We claim that such a prime q satisfies the assertions of the Lemma.
Indeed, by Thoerem the action of the Artin symbol on E[p] implies that ¥g(q) Z 1 (mod p). Conjugating
this congruence yields ¢¥g(q) # 1 (mod p). Since Nq = £ (q)¥£(q), multiplying the congruence by 1x(q) shows
that Nq # ¢p(q) (mod p). O

Henceforth we shall assume that the auxiliary ideal defining the Euler system of elliptic units is any of the

primes q provided by Lemma [5.2]

Proposition 5.3. The L-function of E associated to g satsifies the following properties
1. LWg,1)/Q e K
2. L(¢YE,1)/Q € Ok,
3. L(¢g,1)/Q=0 (mod p) if and only if §(n) =0

where n = n} (Ok).

Proof. We recall that ®, 4 is a rational function of p(z;A) and p(z;A) with K-rational coefficients. Fixing a

Weierstrass model y? = 23 + azx + b of E we may differentiate the Weierstrass equation
O (z;A) = 4p(z; A)® + dap(z; A) + 4b
once to see that p”(z;A) also belongs to K(p(z;A), ©'(2;A)). From this it follows that

Py q € K(p(2;A), 9 (2;A)) too. By Theorem we have

d _
log®ag(z)| = 12407 (Ng - () L, 1)
z=0

We therefore see that L(1g,1)/Q € K so the first claim is proven.

To prove the second and third assertions, consider the p-torsion point

P =(p(e) " %A), ¢ (Vem) T2 A)/2)
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and let z = —z(P)/y(P) € R be the image of P in E[p] under the isomorphism Elp] E[p] By the definition of the
Euler system of elliptic units, we have that n = ®, 4(z). Now, Theorem implies that @, 4(0), 12fQ 1 (Nq —
YE(q)L(YE,1) € Ok ,- Furthemore we have that

D' log(®p,q(X))|x=0 = 127 (Ng — ¥p(a)) L(¢5, 1)

On the other hand, we have

(D'®y,4(X))|x=0
®pq(0)

D' log(®p,q(X))|x=0 =
so that we obtain the expansion
Dpa(X) = Bpg(0)(1 + 12427 (Nq — ¥5(a))L(5, 1)X)  (mod X2)
From this, we see that
= Cpa(z) = Ppg(0)(1 +12fQ7 (Nq — ¢p(q))L(¥p, 1)z) (mod P?)
Applying the homomorphism ¢ : 02,% — Elp| yields
d(n) = (12f(Nq — ¢¥g(a)) L(¥p, 1)/Q)P

Now by Lemma Nq —¢p(q) # 1 (mod p) and so 12f(Nq — ¥r(q)) € O ,. Hence we can have 4(n) = 0 if
and only if L(vg,1)/Q =0 (mod p) as required. O

Remark. We remark that the first assertion of the Proposition is a special case of Damerell’s Theorem which states
7k» .

that for all k € N1 we have L(vg ,k)Q~* € K. The proof of the general case follows the exact same reasoning

as the case in which k = 1 after differentiating the Weierstrass equation to show that, in fact, all derivatives of

®, 4 are elements of K (p(z;A), p(z;A)).

Definition 5.4. Consider the representation of G on E[p]. Then this is an irreducible Z,-representation of G since
E[p] has no proper G-invariant subgroups. Let x g € G be the corresponding character and R, , the corresponding

direct summand in the decomposition of the group ring Z,[G]. Then E[p] = R, . /pR, .

Lemma 5.5. p}” is trivial.

Proof. Suppose, for a contradiction that p}” is not trivial. Let P be the p-part of py. In other words, P is
all the (p™)** roots of unity contained in L for n > 1. Explicitly, we may identify u; ®z Z, with P viewed
as a Z,[G]-module with scalar multiplication by Z, given by exponentiation and the usual action of G. This is

well-defined since P is killed by a large enough power of p. Then
pi? ={CeP|o(()=xge(o)forallc € G}

by Part 3 of Proposition We claim that p}*” consists of pt" roots of unity. Indeed fix ¢ € u}?. Since xg(o)
is killed by p, we have that o(¢?) = ¢? for all 0 € G. If (P # 1 then we would have a non-trivial (p™)** root of
unity (P € K for some n > 1. But this is impossible as p > 7 and K is an imaginary quadratic number field whose

only possible roots of unity are 1 or 3% 4** or 6t" roots of unity. Now since G is isomorphic to E[p]*, for all
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P € E[p]* there exists op € G such that xg(op) = P. Given ¢ € puf” we define a homomorphism

pe: Elp] = pyp

P— xe(op)C

where we set p¢(0) = O which is clearly G g-equivariant and so is an element of Hom(E[p], p,,)“*. Now, the Weil
pairing (see [Sil09) §III.8]) provides a G-equivariant isomorphism E[p] = Hom(E[p], ptp). From the discussion
above, there exists a non-trivial homomorphism in Hom(E[p], u,)¢% and so E[p]“% is non-trivial. But this is a

contradiction to Proposition Hence p}” is trivial. O

Theorem 5.6. Let Cy, be the ideal class group of L. If L(1g,1)/2 € le(’p then C¥¥ is trivial.

Proof. Let n = 1q(Ok). We claim that nX2 ¢ pf?((OF )X2)P. If this were indeed the case then we would be able
to conclude, by Corollary that C¥” = 0. Appealing to Lemma we see that p}” is trivial and son & py”.
We now show that nX= & ((O;)X2)P. Indeed, since § is G-equivariant, we have that 6(nX=) = §(n)X=. Since the
image of § is contained in E[p] and E[p]X = 0 for any x # xg we have that 6(n)X® = §(n). Since L(,1)/Q is a
p-adic unit, Part 3 of Proposition implies that d(n) # 0. It follows that nX® is not contained in the kernel of §

which certainly contains ((OF )XZ)? and so nX2 & ((O)XZ)P as claimed. O

Theorem [5.6] gives us one half of the hypothesis of Corollary 2:4:2] In order to satisfy the second half, we prove

the following Lemma and Theorem.

Lemma 5.7. Suppose that p splits completely in K and Trg,o(¢¥e(p)) # 1. Then p, € Ly and (Ozgr,)XE is a

free Ry, -module of rank one.

Proof. Since the local Artin map is given in terms of the global one, Theoremimplies that [Yr(p), Lyp/K,) =
1. Moreover, since p is totally ramified in Q,(p,), local Class Field Theory implies that [p, Q,(pp)/Qp] = 1.
Now suppose, for a contradiction, that p, C Leq so that K,(p,) C Ly. Note that [K,(pp) : K] =p—1. But p
splits completely in K so, in fact, [K,(pp) : Kp] = Np—1 = [Ly : Kp]. It then follows that [p/¢g(p), Ly/Kp] =1
whence p/¢p(p) =1 (mod p).
Observe that Trx (Ve (p)) = Ye(p) + ¥e(p) = Ye(p) + p/vE(p) where we have used the norm map to obtain
the relation p = ¥ g(p)YE(p). Therefore,

Trr/o(¥e(p)) =1 (mod p)

On the other hand, Part 3 of Theorem implies that ¢ (p) acts as Frobenius on E(F,). Hence by Hasse’s
Theorem (see [Sil09, §V.1]), we have that |Trg,qo(ve(p))] < 2¢/p < p — 1 so we must have that, in fact,

Trg/g(¢e(p)) = 1. But this is a contradiction to the hypothesis of the Lemma and so p, € L.

Now, the J3-adic logarithm map provides us with an isomorphism OZ,‘)? ®z, Qp = Or g ®z, Qp. The latter is
isomorphic to Ly which is, in turn, isomorphic to K,[G]. From this we deduce that (OF m)XE is some quotient of

Ryp = Zy. But Of o ®z, Qp = Ly has no p-torsion since p, € Ly whence (Of 3)X® = R, . O

Theorem 5.8. Suppose that p splits completely in K, L({g,1)/Q € ng and Trg /o(E(p)) # 1. Then (OF )X =

(O p)*®.
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Proof. The natural inclusion map (O] )XF — (OLXm)XE is clearly injective so it suffices to show that it is surjective.
Following the same argumentation of the proof of Theorem [5.6] Part 3 of Proposition [5.3| implies that nX# &
((OF)x=)P C ((OF 33)X#)P and so (OF)* € ((Of 53)X7)P.
Now, by Lemma we have that (Of /pur)X? is a free R, ,-module of rank one. Appealing to Lemma
x

we then see that (O )X is also a free R, ,-module of rank one. Hence (O} )X# must be of the form p"Z, for some

n > 0. By the above discussion, it follows that n = 0 and so the map must be a surjection. O

Theorem 5.9 (Coates-Wiles). If L(Yg, 1) # 0 then E(K) is finite.

Proof. By the |Chebotarev Density Theorem| there are infinitely many primes p of K such that ((K/Q),p) = 1.

We may choose such a prime p not dividing
2:3-5-7- (L(Yp,1)/f

and such that Trg /q(1e(p)) # 1. Let p be the rational prime lying below p. Then p > 7 and splits completely in
K and L(1g,1)/Q is a unit at p. Let B be the unique prime of L lying above p. By Theorem CY" is trivial.
Moreover, Theorem E yields an isomorphism (O} )¥F = (OF ,)*®.

We would now like to apply Corollary in order to annihilate the Selmer group sWe(r ))(E). To this end,
we must show that Hom(Cp,, E[p])¢ = 0 and 6,(0;) # 0.

Let f € Hom(Cp, E[p])“ be a non-trivial homomorphism. We claim that f can only be non-trivial on C}®. Let
X # xE be another irreducible Z,-representation of G and let € C}. By G-equivariance and idempotency of &,

we have

f(x) = flexx) = ey f(x) =0
since E[p]X = 0. Combining this fact with the result that C} is trivial shows that Hom(Cy,, E[p])¢ is itself trivial.
Now, d; is also G-equivariant so that d1((Of ¢)X#) = E[p]. This, together with with the fact that (O )X® =
(Of 43)*=, implies that 61((Of)X#) = Efp| and, in particular, d1(OF) # 0.
It then follows that S®#®)(E) = 0 so by the exact sequence of Proposition we have E(K)/pE(K) =

The Theorem now follows upon applying the [Mordell-Weil Theorem| Indeed, suppose that E(K) were infinite.
Then the Mordell-Weil Theorem implies that E(K) = E(K)iors @ Z" for some r > 1. But then we would have
that E(K)/pE(K) # 0 which is a contradiction. Hence E(K) is finite as desired. O

The following Corollary shows that the Coates-Wiles Theorem holds even when we drop the assumption that

FE has complex multiplication by the maximal order O

Corollary 5.10. Let K be a quadratic imaginary number field of class number 1 and E/K an elliptic curve with
complex multiplication by an order in Ok . If L(1g,1) # 0 then E(K) is finite.

Proof. By Proposition there exists an isogeny ¢ : E — E’ where E’/K is an elliptic curve over K that has
complex multiplication by Og. Recall that the L-functions of isogenous elliptic curves are equaﬂ (see [Kna92|

Theorem 11.67]), so that L(¢g, 1) # 0 if and only if L1z, 1) # 0. By the Coates-Wiles Theorem, E'(K) is then

1This exact sequence also implies that the p-part of the Tate-Shafarevich group I(E)y is trivial.
2The idea behind this is that isogenous elliptic curves have the same reduction type and have the same number of Fy-points for
each prime p of K. The Euler factors in the L-function then coincide.



50

finite. We now claim that the rank of elliptic curves is an isogeny invariant. Indeed, consider the exact sequence

of abelian groups

¢

0 ker ¢ E(K) E'(K)—— 0
Since Q is a flat Z-module, we obtain an exact sequence

0 — kerp®;, Q —— E(K)@z@;’5> E'(K)®zQ —— 0

But the kernel of an isogeny is necessarily finite and, in particular, torsion so ker ¢ ®7 Q = 0 whence E(K) ®;Q =

E'(K) ®z Q. This implies that ranky(E(K)) = rankz(E’(K)) from which we may deduce that E(K) is finite. O

Remark. The general case of an elliptic curve E with complex multiplication by an order in an imaginary quadratic
number field of non-trivial class number 1 can also be shown by similar techniques. The interested reader is

encouraged to see [Sha87].



Appendix

In this appendix we will give a brief exposition of definitions and well-known results from various fields which we
employ in this essay. We shall only provide the proofs for results for which no suitable reference could be found.
At the beginning of each section we shall mention relevant references where the reader may find all omitted proofs

(and more).

A.1 Class Field Theory

In this section we shall provide a concise exposition of the main results and concepts in global class field theory
from both the ideal and idelic perspectives. Class field theory is vast and we cannot hope to provide details of all
the statements, let alone the proofs. That being said, the techniques and machinery provided by class field theory
will be crucial to our proof of the Coates-Wiles Theorem and of the construction of elliptic units in general so it
will be necessary to recall the most important elements of the theory. We shall not require much, if any, local
class field theory but it will be useful for us to recall a few concepts from this theory as well. The main reference

for this section will be [Daol7].

Let K be a number field and denote by Of its ring of integers. We shall write Gx = Gal(K/K) for the
absolute Galois group of K. By a prime p of K, we mean an equivalence class of absolute values on K. Recall that
by Ostrowski’s Theorem, every absolute value | - |, on K is either a non-archimedean p-adic absolute value (with
associated valuation v,) or an archimedean absolute value. We may thus identify the primes of K with prime
ideals (henceforth the finite primes) of Ok and the field embeddings K < C (henceforth the infinite primes).
Given a prime p of K, we shall write K, for its completion with respect to p. If p is finite (p { co) then we shall
write O, for its ring of integers. If p is infinite (p | co) and corresponds to a real embedding we shall say that p
is real; if it corresponds to a complex embedding we shall say that p is complez.

Let L/K be a Galois extension of number fields and p a finite prime of K. Then Gal(L/K) permutes the
primes B of L lying over p and this action is transitive. We define the decomposition group of L/K relative to 3
to be

Gal(L/K)y = {0 € Gal(L/K) | () =9}

It can be shown that Gal(L/K)y = Gal(Ly/K,). Let Fyp = Or /% and F, = Ok, be the residue fields of the
completions. Then Gal(Lsy/K,) surjects onto Gal(Fy /F,) via the reduction map.

Thanks to this surjection, we may make the following definitions. We define the inertia group Iy of L/K
relative to P to be the elements of Gal(L/K )y that reduce to the trivial automorphism of Gal(Fg/Fp). If p

is unramified in L/K then [Ly : K] is just the degree of the corresponding extension of residue fields and so

Gal(Ly, K,) = Gal(Fyp,F,). In this case, we define the Artin symbol or Frobenius element, denoted ((L/K),R)
of L/K relative to P to be the unique element of Gal(L/K )y that acts as Frobenius on Fo /F,.
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We recall that the Frobenius elements relative to primes above an unramified prime p are conjugates. In other
words, for all o € Gal(L/K) we have ((L/K),o(B)) = oo ((L/K),B) oo~!. We then define the Artin symbol of
pin L/K, denoted ((L/K),p) to be the conjugacy class of ((L/K),) for any prime B lying over p. We note that
if L/K is abelian then the conjugacy classes have a unique element and we identify ((L/K),p) with its unique

element.

Assume frome now on that L/K is a finite abelian extension of number fields.

Proposition A.1.1. Suppose that p is a finite unramified prime of K and B a prime of L lying over p. Then
((L/K),p) =1 if and only if p splits completely in L.

Let S be a set that contains all the primes of K that ramify in L and I IS; the subgroup of all fractional ideals of
K that do not contain a prime of .S in their factorisation. We define the Artin map to be the unique homomorphism

@E/K : I3 — Gal(L/K) that extends the Artin symbol.

Let Mg be the set of all primes of K, Mz the subset of infinite primes and M;(OO the subset of finite primes.

We define a modulus of K to be a function m : Mg — Z such that

1. m(p) > 0 for all p € Mg and m(p) = 0 for all but finitely many p € Mi(oo.
2. m(p) =0 or 1 for all real primes p.

3. m(p) = 0 for all complex primes p.

We can write a modulus as a formal product m = Hpe My pm(p). Moreover, we can write m = my,mg where mg,
is the real infinite part of m and mg is the finite part of m which can be identified with an integral ideal of O.

Given two moduli m and n, we say that m divides n if m(p) < n(p) for all p € Mk.

Let m be a modulus of K and a € K*. We say that « is multiplicatively congruent to 1 modulo m, denoted

a =1 (mod* m), if
L. a€1+p™P O, g for all finite primes p such that m(p) > 0.

2. |al, > 0 for all real primes p such that m(p) > 0.

We now define a series of notations. We let Ix be the group of fractional ideals of K, I} the subgroup of fractional
ideals of K that are prime to a modulus m. Let Px be the subgroup of Ix of principal ideals and similarly for
P, Furthermore, we define Pt = {(a) € P2 |a =1 (mod*m)},K™ = {a € K* | (o) € P2} and similarly

for K™1. Finally, we define the ray class group of K modulo m to be the factor group C'% = I}‘;/P}?l.

Theorem A.1.2. Let m be a modulus of K and Ck the ideal class group of K. Then we have an exact sequence

1 —— OL)(OLNK™Y) — 5 Km /K om Cx 1

Furthermore, K™ /K™ = { £1 }|m°°| X (Ok /mo)*. In particular, C'% is finite.

Theorem A.1.3 (Class Field Theory). Let m be a modulus for K. Then

1. (Existence) There exists an abelian extension of K, denoted K(m) and called the ray class field of K
modulo m, such that C% = Gal(K (m)/K) via the Artin map.
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2. (Completeness) Every finite abelian extension of K is contained in a ray class field of K for some modulus

m.

3. (Artin Recpirocity) For every intermediate field L of K(m)/K, the Artin map induces an isomorphism

m

K
PK’IN[/KIm[ ( / )

@?/K :
Consider the trivial modulus 1 of K. Then H = K (1) is referred to as the Hilbert class field of K and satisfies

Gal(H/K) = Ck. It can be shown that H is the maximal unramified abelian extension of K.

We now discuss the idelic theory. Let { G; },.; be a family of locally compact groups and K; C G; an open

iel
compact subgroup for each ¢ € S where S C I is finite. We define the restricted product of the G; with respect to
the K; to be

HKi Gi = { (9 €[]G

i€I\S i€l

gi € K; for all but finitely many i € I\S }

We equip the restricted product with the topology generated by the basis of open sets

e

iel

A; is open in G; and A; = K; for all but finitely many ¢ € I }

It is an easy consequence of Tychonoff’s Theorem that the restricted product is a locally compact group. We

then define the idéle group of K to be
= 117 K
peM\Mge

It can be shown that K* embeds as a discrete subgroup of Ix and so we define the idéle class group of K to
be Cx = Ix/K*. An important result concerning C'x is that its every open subgroup has finite index which
is a consequence of the finiteness of the class number. If x € Igx, we define the ideal associated to = to be
HpeMi;’C pU»(») and we define the idealifier to be the map J : Ix — Ix sending an idele to its associated ideal.
Furthermore, we define the idéle norm to be the map Ny k : I — Ik that sends z € I, to y € I whose pth

component is qu/p Np, /K, T3-

Proposition A.1.4. Let m be a modulus for K and define the groups

Opk if ptoo,m(p) =0

gne _ ) 1 F prPO, ki ptoo,m(p) >0

" K} if p | oo, m(p) =0
RZ, if p is real,m(p) > 0

Denote UR = [1,cnry Ug(p). Then
1. Ug is an open subgroup of I .
2. Bvery open subgroup of I contains UR for some modulus m.

3. C JUR = O,

Theorem A.1.5 (Class Field Theory). Let K2 be the mazimal abelian extension of K. Then there is a continuous
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surjective homomorphism called the Artin map
[, K**/K] : Tx — Gal(K**/K)

For an intermediate abelian field L of K*® /K write |-, L/K] = [-, K*®/K]|r. The Artin map satisfies the following

properties:

1. (Artin Reciprocity) [K*, K* /K] = 1 and so the Artin map descends to a homomorphism Cx — Gal(K?"/K)

which induces an isomorphism
[ K*/K]: Cg — Gal(K*/K)

where 6’; is the profinite completion of Cx. Furthermore, for every finite abelian extension L/K, we have

an isomorphism
[,L/K] : CK/NL/K Cr — Gal(L/K)
2. (Ezistence) For every finite-index open subgroup N of C, there exists a unique abelian extension L/K such

that N = N,k Cr. In particular, for every modulus m of K, the ray class field K(m) is the unique abelian

extension such that N (m)/k Cxm) = Ug.

3. (Compatibility) Let L/K be a finite abelian extension and x € Ix be an idéle such that 3(x) is prime to all
finite primes of K that ramify in L. Then

o 2/K1= (557

J(x)

4. (Norm Restriction) Let L/K be an extension of number fields. Then
[v,L*"/L] = [N,k z, K* /K]

Let K be a number field and p a finite prime of K. We define the local Artin map [-, K3*/K,] : K —

Gal(Kgb/Kp) to be the restriction of the global Artin map to K, considered as a subgroup of I.
The following is a celebrated theorem from classical Class Field Theory. For a proof, see |Tri|.
Theorem A.1.6 (Chebotarev Density Theorem). Let L/K be a Galois extension of number fields and C C

Gal(L/K) a conjugacy class. Then there are infinitely many finite primes of K that do not ramify in L such that
(L/K),p) =C.

The following Proposition is not directly related to Class Field Theory but this is the most appropriate section
for it to be included in. For a proof, see |Ash10, 6.3.1].

Proposition A.1.7. Let K be an imaginary quadratic number field. Then |Of| = 2,4 or 6.

A.2 Galois Cohomology

Our next discussion will be regarding Galois cohomology. The main references for this section are [Sil09, Appendix
B] and [Ser97, §2].

Let G be a profinite group and M an abelian group equipped with the discrete topology on which G acts.
Denote by m? the action of ¢ € G on m € M. We say that M is a G-module if the action of G on M is
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continuous and is compatible with the module structure of M. A homomorphism of G-modules M and N is a

group homomorphism M — N that commutes with the action of G.

From now on, fix a G-module M. We define the group of n-cochains, denoted C™(G, M), to be the group
of all continuous functions from G™ — M. We define the coboundary homomorphisms to be the maps d"t! :

C"(G,M) — C"1(G, M) given by the formula

(@) (g1, s gnt1) = 9190(92, -+ gny1) + Z(—l)iso(gu 3 9im1,9ii+1, Git2s - -+ Gnt1)
i=1

+(=1)"" (g1, -, gn)

It can be checked that d"*1od™ = 0. For all n > 0, we define the group of n-cocycles to be Z™(G, M) = ker(d"*1)
and the group of n-cocycles to be B"(G, M) = im(d"™) for n > 1 and 0 when n = 0. We then define the n-cohomology
group to be the factor group H"(G, M) = Z™(G,M)/B™(G, M). For our purposes, it will be sufficient to give
explicit descriptions for the 0 and 1%!-cohomology groups. We have that

H(G,M)=M%={meM|m’=mforalocG}
ZYN G, M) ={ce CHG,M):c(o7) =c(o)" +c(T)}
BYG,M) = {ce C*G,M)| there exists m € M such that c(c) =m’ —m for all o0 € G}

We observe that if M is a G-module via the trivial action then H°(G, M) = M and H'(G, M) = Homeon (G, M).

Proposition A.2.1. Let

0 N SN 0

be a short exact sequence of G-modules. Then there exists a long exact sequence of cohomology groups

0 — HOG,P) —2—~ H(G, M) —— H(G,N)

/>
o
MG, M) 2 HY(G, N

where the ¢* and V* are the induced homomorphisms of cohomology groups and 6 is the connecting homomorphism
defined as follows. Fizn € H°(G, N) and choose m € M such that 1¥(m) = n. Define the cochain f € C*(G, M)
by f(o) =m° —m and set 6(n) = [f].

Let H be a subgroup of G. Then any G-module is naturally an H-module via restriction of the group action.
We define the restriction homomorphism of cohomology groups to be res : HY(G,M) — H'(H,M) given by
restriction of the domain of cochains to H. Now suppose that H is normal in G. Then M is naturally a G/H-
module. Given a 1-cochain f : G/H — MY we may compose f with the projection G — G//H and the inclusion
M* C M to obtain an inflation homomorphism of cohomology groups inf : H(G/H, M%) — HY(G, M).

Proposition A.2.2. Let M be a G-module and H a normal subgroup of G. Then we have an exact sequence
0 —— HYG/H,MH") 2Ly gi(G, M) —= HY(H,M)%/H —— H2(G/H, MH)

Let K be a perfect field so that Gk is a profinite group. Then a G g-module is an abelian group with an action

of the absolute Galois group G . We shall often write simply H!(K, M) in the place of H* (G, M).



A.3. Character Theory 56

Proposition A.2.3 (Hilbert’s Theorem 90). Let K be a perfect field. Then Hl(K,FX) =0

Proposition A.2.4. Let K be a perfect field such that char(K) = 0 or char(K) { m. Then H'(K, ) =
KX/(KX)m.

A.3 Character Theory

In this section we discuss certain key concepts concerning characters of finite groups. For any finite abelian group

G, let G denote its character group consisting of all characters of G into an algebraic closure Q of Q.

Let G be a finite abelian group and x € G a character. We define the x-idempotent in the group ring Q[G] to
be

The following Proposition provides us with the key properties of the y-idempotent. Since the proof is straight-

forward, we provide it for completeness.

Proposition A.3.1. Let G be a finite abelian group and x € G a character. Then the x-idempotent is indeed an

idempotent element of the group ring Q[G]. Moreover,

1. Given another character x # ¢ € G we have exey = 0.

2. er@ ‘SX =1.

3. For all 0 € G we have ey0 = x(0)ey.

Proof. We first show that ¢, is idempotent. Indeed,

=G|~ (Z x(0_1)0> (Z X(T_1)7> =16 72Y o (Z X(T_l)X(TU_1)>

oelG T€G e T€G
=G o (IGIx(e™)
oelG
1 ~1
= el Z x(o7 )o = ¢y
ceG

Now suppose that 1 is another character of G distinct from y. By the orthogonality of characters, we have that

ExEy = G2 (Z X(01)0> <Z 1/1(71)7') =|G|? Z <Z X(Tl)w(701)>

oeG TEG oceG \ted
161 Y v (zx . )_o
oceG T€G

Since 3 .5 x(9) = |G| if g = 1 and 0 otherwise, the summation assertion follows immediately. Finally, fix o € G.

Then

€XU:%ZX(T)T’1G €] > x(v o)y =x(0)ey

TEG vEG

which proves the final assertion. O

Proposition A.3.2. Let M be a Q[G]-module. Then M admits a decomposition into Q[G]-submodules of M, M =

@xeé MX where MX = e, M is the so-called x-eigenspace of M.
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Proof. By Part 2 of Proposition it follows that M is the sum of the MX. To see that it is in fact a direct
sum, suppose that MX and MY are two distinct eigenspaces. We need to show that MX N M¥ = {0}. To this
end, suppose that « is an element of both MX and M¥. Then o = mX and a = n¥ for some m,n € M so
that mX = n¥. By the idempotency of ¢, we have that mX = (n¥)X. Appealing to the orthogonality of ¢ yields
mX = 0. O

Remark. We observe that if R is a commutative ring containing the images of every x € G and in which |G| is a

unit, then the above results all hold completely analogously for the group ring R[G].

A.4 Elliptic Curves over the Complex Numbers

In this section we shall state results and definitions of the analytic theory of elliptic curves defined over C. The
main references for this section are [Sil09, Chapter VI] and [Sil94, §1.5]. Fix a lattice L C C. We define the

Weierstrass functions

0#weL
1 1
0#weL
ozl =z [] (1-2)etrmsit/r
0#weL w

Furthermore, let covol(C/L) be the covolume of a fundamental paralellogram for L. We define
A(L) = 7~} covol(C/L)

s2(L) = lim Z w2 w|

s—0t
s 0#weEL

1
Gi(L) = Z J,k’EN}; and k even

0#weL

We finally define the quasi-period map to be
n(z; L) = A(L)"'Z + s5(L)z
The main properties of the Weierstrass functions of interest to us are summarised in the following proposition.

Proposition A.4.1.

1. o(z;A) defines a holomorphic function on C with simple zeroes on L and no other zeroes.
2. For all z € C we have

D) = —pla ), Sloglo(z ) = (1)

3. For all z € C and w € L we have
o(z +w; L) = p(w)e"™ 2o (2, L)

where ¥ : L — {1} is defined by Y(w) =1 if w € 2L and Y(w) = —1 if w ¢ 2L.
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Theorem A.4.2. There is an equivalence of categories

Objects: Elliptic curves defined over C Objects: Lattices L C C up to homothety
—

Morphisms: Isogenies Morphisms: Hom(L1,Ls) ={a € C|al, C Ly}

This correspondence can be made explicit in the following way. Suppose that we are given a lattice L C C.
Then the Weierstrass equation y?> = 23 — 15G4(L)x — 35Gs(L) defines an elliptic curve E/C and we have an

analytic isomorphism
¢:C/L— E(C)
2 (p(z1 L), ¢/ (2:L)/2)
Moreover, the discriminant and j-invariant of E are given by

A(L) = (60G4(L))® — 27(140G(L))?
j(L) = —1728(60G4(L))*/A(L)

Conversely, suppose that we are given an elliptic curve E/C with a fixed Weierstrass model y? = 2% + ax + b.
Then the Uniformisation Theorem guarantees the existence of a lattice L C C such that 15G4(L) = —a and
35Ge(L) = —b.

We note that this correspondence identifies the holomorphic invariant differential of an elliptic curve wg with

the differential dz.

Recall that en elliptic function relative to L is a meromorphic function f(z) on C that is periodic with respect

to L. In other words, for all z € C and w € L we have

f(z+w) = [(2)
We denote by C(L) the field of all elliptic functions relative to L.

Proposition A.4.3. Let L C C be a lattice. Then

A.5 Elliptic Curves over Non-Archimedean Local Fields

We will now recall key results concerning elliptic curves over local fields. The main references for this section are

[Rub99l §3] and [Sil09, Chapter VII].

Fix a rational prime p and a finite extension F' of @, with ring of integers Op. Let p be the maximal ideal of
Op and 7 a uniformiser for p so that F, = Op/p is the residue field of F'. Let v, be the p-adic valuation on F,

normalised so that v, (7) = 1.

Let E be an elliptic curve defined over F. We say that a particular Weierstrass model with coefficients in Op
of E is minimal with respect to v, if the valuation of its discriminant is minimal amongst all the valuations of
discriminants of such Weierstrass models. From now on, we fix a minimal model of E with minimal discriminant
A. We define the reduction of E, denoted E, to be the curve given by reducing the coefficients of the Weierstrass
model of £ modulo p. It can be shown that such a curve is independent of the choice of minimal model of E and

has, at most, one singular point. We denote by E, the quasi-projective curve obtained by removing the singular



A.5. Elliptic Curves over Non-Archimedean Local Fields 59

point from E which is also an abelian group. Denote by Ey(F) all the points of E with non-singular reduction

and E;(F) the kernel of reduction.
Proposition A.5.1. There exists an exact sequence of abelian groups
0 —— E1(F) —— Eo(F) —— Ens(Fp) —— 0
Proposition A.5.2. We have that
EV(F) ={(z,y) € E(F) [ vp(z) <0} = {(z,y) € E(F) [vp(y) <0}
Moreover, if (x,y) € E1(F) then 3v(z) = 2v(y).
We say that E has good reduction if A € O and E is non-singular. If not then E is always singular and we say

that F has bad reduction. Moreover, we say that E has potentially good reduction if there exists a finite extension

of F' over which E has good reduction.

Proposition A.5.3. Suppose that E has good reduction. Then the reduction map E(F) — E(F,) induces an

injection of endomorphism rings Endp(E) — Endg, (E) which sends an endomorphism of E to its corresponding

endomorphism ¢ of E.

Proposition A.5.4. Suppose that E has good reduction and let ¢ € Endp(E) be such that ¢ is purely inseparable.
Then ¢ is injective and ker(¢) C Ey(F).

Recall that E admits a formal group E with formal group law Fg € Op[[Z, Z']]. Moreover, we have a power
series w(Z) = Z3 3.2 A; Z* for some A; € Z[ay, ..., ag] and power series z(Z) = Z/w(Z) and y(Z) = —1/w(Z)
giving an F'((Z))-rational point (x(Z),y(Z)) of E. xz(Z) and y(Z) are compatible with the formal group law in

the following sense
(@(2),y(2)) + (2(2"),y(2")) = (x(Fe(Z,2),y(Fe(Z, Z")))

We also have a map Endp(F) — End(E) that takes an endomorphism ¢ of E and maps it to an endomorphism
® of E satisfying ¢(z(2),y(2)) = (x(®(2)),y(®(z)). Given n € N>1, we let E(p™) be the abelian group on the

set p™ with group law given by (z,2') — Fg(z,2’).
Proposition A.5.5. We have an isomorphism
E(p) = Ex(F)
Z = (2(2),y(2))
with inverse given by the map (z,y) — —x/y.

Proposition A.5.6. Suppose that E has good reduction and let q be the cardinality of the residue field of F. If
¢ € Endp(E) reduces to the Frobenius endomorphism ¢, of E then ®(Z) = Z? (mod pOr[[Z]]).

We now recall that we have a formal analogue of the invariant differential given by

2'(2)

w(2) = 2y(Z) + a12(Z) + as

We next define the formal logarithm map Az(Z) to be the unique power series such that A’-(Z) = @(Z) which

converges on p and induces an isomorphism E(p) — p when v, (p) < p— 1. We furthermore define the logarithm
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map of £ Ag : E1(F) — F to be the composition of the isomorphism of Proposition with the inverse of the
isomorphism of Az. Hence if v,(p) < p — 1 then Ag : E1(F) — p is an isomorphism.

Let Dp(E) & F be the vector space of one-dimensional holomorphic differentials on E defined over F. Every
endomorphism ¢ of F induces an endomorphism ¢* of Dr(E) and we therefore have an injective homomorphism

of abelian groupsEI

Proposition A.5.7. Let ¢ € Endp(E). If 1(¢) € OF then ¢ is an automorphism of E1(F). Moreover, if E has
good reduction then the reduction homomorphism E[¢] N E(F) — E(F,) is injective.

Proposition A.5.8. Suppose E has good reduction and let ¢ € Endp(E) be an endomorphism such that 1(¢) € OF.

If P € E(F)) is such that ¢(P) € E(F) then the extension F(E[¢p], P)/F (obtained by adjoining the coordinates

of the relevant points) is unramified.

A.6 Elliptic Curves over Global Fields

We next recall key results about elliptic curves over number fields. The main references for this section are [Sil09,
§VIII.4] and [Sil09, §X.4].

Let K be a number field and F an elliptic curve defined over K. Let p be a finite prime of K. We say that F has
good (respectively bad and potentially good) reduction at p if E/K, does. Let A, (E) be the minimal discriminant
of E/K,. Since E has only finitely many primes of bad reduction, we may define the minimal discriminant of K

to be A(E) = HpeM&m Ay (E).

Theorem A.6.1 (Mordell-Weil). E(K) is a finitely generated abelian group.

We now identify Endg (F) with its image @ C K under the map ¢. It can be shown that O is either Z or an
order in an imaginary quadratic number ﬁelcﬂ Fix a non-constant endomorphism «a € O of E, let E[a] denote its
kernel on K and K(E|a]) the finite extension of K gven by adjoining the coordinates of the points in E[a] to K.

Since multiplication by « is surjective we have an exact sequence of abelian groups

0 Elo] E(E) — B(K) —— 0

Note that each of these abelian groups admits a natural G'x-action given by the G -action on the coordinates.

In particular, they are G g-modules so passing to G g-cohomology yields a long exact sequence

0 —— HY(K, Ela))

(Hml(l{, E) -+ H'(K,E)

o) —

where we have written H'(K, E) = H'(K, E(K)) to ease notation. Writing H!(K, E),, for the kernel of !, this

may be written as a short exact sequence

INote that this definition works for elliptic curves over arbitrary fields but it is only injective if the characteristic of the defining
field is O.

2This much is true for any elliptic curve over a characteristic 0 field. If the characteristic is not 0 then © may be an order in a
quaternion algebra over Q.
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0 —— BE(K)/aE(K) —» HY(K,E[0]) — H(K,E)y —— 0

Given a prime p of K, we may repeat the same process with F considered as defined over K, to obtain a

commutative diagram with exact rows

00— B(K)/aE(K) —>— HY(K,E[a]) ———— HY(K,E)o —— 0

0— [ EG,)/aB(K,) —— [] H'(Kp Ela) — [[ H'(Kp E)a — 0
peEMK peEMgk peEMgK

Explicitly, the second vertical map res is given coordinate-wise by the cohomological restriction map H'(K, E[a]) e,

H'(K,, E[a]) and similarly for the third one. We define the a-Selmer group, denoted S (E), to be the kernel of
the dotted homomorphism in the diagram above. Since the rows are exact, we have the following two equivalent

definitions for the a-Selmer group

SCN(E) =ker | H'(K,Ela]) » [] H'(Ky, Elo])
pEMK

={ce H' (K, E[a]) | res, € im(d,) for all p € Mg }

It can be shown that the a-Selmer group of F is finite. Moreover, we define the Tate-Shafarevich group of E,
denoted III(E) to be

II(E) =ker | H'(K,E) —» [[ H'(K,,E)
pEMK

The non-trivial elements of the Tate-Shafarevich group can be interpreted as the homogeneous spaces of E that
have Kj-rational points for every prime p of K but no K-rational points. In other words, the Tate-Shafarevich
group is a measure of how well F satisfies the Hasse principal - if III(E) is trivial then the Hasse principle holds.
It is an important and long-standing conjecture that the Tate-Shafarevich group is finite. Rubin verified this for

particular elliptic curves with complex multiplication using many of the methods we develop in this essay.

Proposition A.6.2. Let a € O be a non-constant endomorphism of E. Then there exists an exact sequence
0 — E(K)/aE(K) — S'®)(E) —— II(E)y, —— 0

In particular, if $')(E) is trivial then so is E(K)/aE(K) and II(E),.

A.7 Complex Multiplication

In this final preliminary section, we discuss results about elliptic curves with complex multiplication. The main
reference for this section is [Rub99, §5].

Let L be a subfield of C and E/L an elliptic curve. We say that F has complex multiplication if Endp(E) % Z.
In this case, End(E) is an order O in an imaginary quadratic number field. Let K = QO be the imaginary
quadratic field containing O. Given an ideal a <O, we write Efa] = (¢, E[a]. If p is a prime ideal of O then
we write E[p™] = UneN21 E[p"]. Via the correspondence in Theorem we may fix a lattice A C C and an
analytic isomorphism C/A LN E(C). We may scale A by a constant in C so that A C K whence A is a fractional
ideal of O.
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Proposition A.7.1. There exists an isogeny ¢ : E — E' where E' is an elliptic curve defined over L with complex

multiplication by the mazximal order Ok .

In light of this Proposition, we may assume that E has complex multiplication by Og.

Theorem A.7.2. Let a < Ok be a non-trivial ideal. Then Ela] & Ok /a as Og-modules. Via the analytic
isomorphism & we then also have that a 'A/A = Og/a. Moreover, this isomorphism induces an injection

Gal(L(E[a])/L) — Ok /a*. In particular, L(E[a])/L is an abelian extension.
Theorem A.7.3. Letl be a rational prime and F a finite extension of Q;. Then
1. E has potentially good reduction.

2. If p is a prime of K not dividing | and n € Ny is such that 1 4+ Ok, is torsion free then E has good

reduction when considered defined over F(E[p™]) at all primes not dividing p.

The next two Theorems are consequences of the Fundamental Theorem of Complex Multiplication (see [Rub99,

Theorem 5.11]).

Proposition A.7.4. Let H be the Hilbert class field of K. Then there exists an elliptic curve defined over H with

complex multiplication by Ok which is isomorphic to E over C.

Recall that a Hecke character of a number field L is a homomorphism of groups ¢ : I, /L* — C*. We say
that 1 is unramified at a prime P of K if (O p) = 1.

Theorem A.7.5. There exists a Hecke character g : Iy /L* — C* associated to E such that
1. The conductor § of yg is divisible by exactly the primes of bad reduction of E.
2. If x €1, is an idéle and y = Ny /i (x) € I is the idéle norm of x then
Ve(@)0k =y I(y)Ox
where Yoo 15 the component of y corresponding to the unique complex prime of K.

3. If x € Iy is an idéle taking the value 1 on all infinite primes of L and p is a finite prime of K then
VE(2)(Ny/k(z), ' € O - Moreover, for all P € E[p™] we have

[, L* /L] P = ¢ () (N (2)) ' P
4. If B is a finite prime of L then ¥g is unramified at B if and only if E has good reduction at*B.

Any Hecke character of conductor f yields a Hecke character in the classical sense v : Iz — C* (see |CF67,

§VIIL.1]). We may thus translate the above Theorem to the classical sense as follows

Theorem A.7.6. Let f<Op be ideal given by the product of all primes of bad reduction of E. Then there ezists

a Hecke character ¢ : IE — C* such that
1. For all ideals b< Oy, prime to f we have g (b)Ox = Nk (b)Of.

2. Given a finite prime B of L and an ideal b <Oy, both prime to f then the action of [P, L(E[b])/L] on E[b]
is given by multiplication by Y E(B).
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3. If B is a prime of good reduction of E then the endomorphism g (B) acts as Frobenius on E(F,).

Proposition A.7.7. Let p be o finite prime of L. Then there exists a curve isomorphic to E over L with good

reduction at p.

Proposition A.7.8. Suppose that E is defined over K.

1. Ifp is a finite prime of K such that the reduction map (Og)* — (Ok /p)* is not surjective then E[p] € E(K).

2. If § is the conductor of g then the reduction map O — (O /§)* is injective. In particular, E does not

have good reduction at all primes of K.

The following Theorem is a collection of important results that (partially) show that elliptic curves with

complex multiplication give an explicit description of class field theory for imaginary quadratic fields.

Theorem A.7.9. Suppose that E is defined over K, a<Ok an ideal and p a finite prime of K, both prime to 6f.
Then

Elaf] € E(K(af) and Gal(K(Ela])/K) = (Ok /a)*
2. If b divides a then Gal(K (E[a])/K (E[b])) = Gal(K (af)/ K (bf)).
3. K(E[ap™))/K (Ela)) is totally ramified above p.
J. If the reduction map (Ox)* — (O /a)* is injective then K (E[ap™))/K (E[a)) is unramified outside of p.

We define the Hecke L-function associated to powers of 1/JE to be analytic continuation of the Dirichlet series

1/}E7

b<IOK Nbs

(b,fr)=1
where fj is taken to mean the conductor of ¥%. It is a Theorem of Hecke that this Dirichlet series does indeed
admit an analytic continuation. If m is prime to f and ¢ is prime to m then we define the partial L-function
L (¥%, s, ¢) similarly but with the summation restricted to ideals b < O such that [b, K(m)/K] = [¢, K(m)/K].
We note that if L(E,s) is the L-function of E in the usual sense then L(E,s) = L(v¥g,s)L(¢g,S) (see [Sil09,
§11.10]).



Notation Index

Symbol

S(a)(E)

H"(K, M)

Ve
L(4}, 5)

Lm(wﬁja s,¢)

Meaning
Relaxed a-Selmer group of the elliptic curve E
m"-Kummer pairing

m-reciprocity map

©-function of the elliptic curve F/K with respect to the auxilliary ideal a € Ok

E[b\{ Ok }
(a'A/AN{0}
Fundamental #-function of the lattice L

Eisenstein series of weight k attached to the lattice L

®-function of the elliptic curve E/K with respect to the auxiliary ideal a < Ok

Elliptic unit of given by n € N>p and v € R
t-derivative operator in Z[G,]

t-norm operator in Z[G]

Artin symbol of the unramified prime p in the Galois extension L/K
Ideal class group of the number field K

Ray class group of the number field K modulo m
Ray class field of the number field K modulo m
Artin map of the global or local field K

Idele group of the number field K

Idealifier map J : Ix — Ik

Idele class group of the number field K
nt"-cohomology group of the G g-module M
x-idempotent of a character x : G — Q
Quasi-period map associated to the lattice L
Weierstrass o-function associated to the lattice L
Weierstrass p-function associated to the lattice L
Weierstrass (-function associated to the lattice L
a-Selmer group of the elliptic curve
Tate-Shafarevich group of the elliptic curve E
Conductor of the Hecke character g associated to the elliptic curve E
Hecke character associated to the elliptic curve F
Hecke L-function associated to E

Partial Hecke L-function associated to E
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