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Abstract

Let E be an elliptic curve with complex multiplication by an order in an imaginary quadratic field K of class

number 1 and ψE its associated Hecke character. The Coates-Wiles Theorem states that if the Hecke L-function

L(ψE , s) is non-vanishing at s = 1 then E(K) is finite. This theorem fits into the larger framework of the Birch

and Swinnerton-Dyer conjecture which remains open to this day. In this essay we will explore Rubin’s proof of

the Coates-Wiles Theorem via the machinery of abstract Euler systems. In particular, we will construct the Euler

system of elliptic units by using torsion points of E to generate global units in abelian extensions of K. We will

then use a modified Selmer group to reduce the problem down to studying a particular ideal class group and

the group of global units of K. Using the Euler system, we will be able to annihilate this class group whence

the Coates-Wiles Theorem will follow via an application of the well-known Chebotarev Density Theorem and

Mordell-Weil Theorem.
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Chapter 1

Introduction

The Birch and Swinnerton-Dyer conjecture has tantalised mathematicians for the better part of five decades.

Its difficulty and importance is surely confirmed by its current status as one of the Clay Mathematics Insitute

Millennium Problems. It was first put forward by Bryan Birch and Peter Swinnerton-Dyer in the mid 1960s in

light of numerical evidence gathered using the early computers of the era. To date it remains the most well-verified

open problem in Number Theory due mostly to its exact formulation rather than asymptotic nature. The Birch

and Swinnerton-Dyer conjecture, henceforth BSD conjecture, usually takes the form of two statements known as

the weak and strong BSD conjectures which are stated as follows

Conjecture (Weak BSD). Let E an elliptic curve defined over Q and L(E, s) its L-function. Then the rank of

the abelian group E(K) is equal to the order of vanishing L(E, s) at s = 1.

Conjecture (Strong BSD). Let E an elliptic curve defined over Q of rank r and L(E, s) its L-function. Then

lim
s→1

L(E, s)

(s− 1)r
=

ΩEReg(E)|X(E)|
∏
p cp

|E(Q)tors|2

where ΩE =
∫
E(R)
|ωE |, Reg(E) is the elliptic regulator of E(Q)/E(Q)tors, X(E) is the Tate-Shafarevich group of

E and cp = |E(Qp)/E0(Qp)| is the Tamagawa number of E/Qp.

It is perhaps not very surprising that the strong BSD conjecture remains unproven considering the appearance

of the cardinality of the Tate-Shafarevich group in the above formula. This quantity has been proven finite for

certain elliptic curves such that L(E, 1) 6= 0 by the work of Karl Rubin ([Rub87]). Moreover, Victor Kolyvagin

([Kol89]) showed that if the order of vanishing of L(E, 1) is either 0 or 1 then the weak BSD conjecture holds

and the Tate-Shafarevich group is finite. The finiteness of the Tate-Shafarevich group remains, however, an open

problem in the general case.

Rubin’s work on the finiteness of the Tate-Shafarevich group built upon the earlier work of John Coates and

Andrew Wiles in their paper [CW77] in which they proved the following result

Theorem (Coates-Wiles). Let K be an imaginary quadratic number field with class number 1 and E an elliptic

curve over K with complex multiplication by an order in OK . If the Hecke L-function L(ψE , s) is non-vanishing

at s = 1 then E(K) is finite.

It is immediately clear that the Coates-Wiles Theorem implies that the predictions made by the weak BSD

conjecture (in the case of general number fields) hold. The goal of this essay shall be to provide a detailed

exposition of Rubin’s proof of the Coates-Wiles Theorem given in his paper [Rub99]. The proof is indeed a tour

de force in the theory of complex multiplication and elliptic units along with abstract Euler systems and, as such,

we will provide a comprehensive account of all the complex machinery involved.

Chapter 2 will be concerned with calculating a particular Selmer group. We will define a modified Selmer

group in which we relax the usual cohomological conditions. We will be able to completely determine this modifed
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Selmer group in the cases that are of interest to us which will then allow us to home in on the structure of the

normal Selmer group. We will furthermore show that we can annihilate the true Selmer group using our modified

one together with a certain Kummer pairing and a condition on a particular ideal class group.

In Chapter 3 we will construct the elliptic units which are a collection of global units in particular abelian

extensions of an imaginary quadratic number field. We shall show that they satisfy a distribution relation analogous

to that of cyclotomic units in cyclotomic fields. Moreover, we shall demonstrate a connection between such elliptic

units and the Hecke L-function of an elliptic curve with complex multiplication.

Chapter 4 will see us constructing abstract Euler systems which axiomatise the phenomenae exhibited by the

cyclotomic and elliptic units. In particular, we shall define a so-called p-system which shall act as a framework to

which we may attach a universal Euler system. After proving some useful properties of Euler systems, we will go

on to constructing principal ideals in p-systems. We then go on to showing how to bound and annihilate an ideal

class group using these principal ideals as relations.

In Chapter 5, we will finally provide the proof of the Coates-Wiles Theorem by exploiting the machinery

developed over the course of the essay, together with the Chebotarev Density Theorem of class field theory and

the Mordell-Weil Theorem.

Throughout this essay we shall assume that the reader is familiar with the elementary theory of elliptic curves,

complex multiplication and global class field theory. This being said, an appendix has been provided which provides

an account of well-known and important statements in the aforementioned fields used in this essay. Should the

reader find any confusion with notation, he or she is invited to view the Notation Index at the end of this document

and, indeed, the appendix.



Chapter 2

Calculation of the Selmer Group

The aim of this chapter is to calculate the πn−Selmer group S(πn)(E/K) where K is an imaginary quadratic field

with class number one and π is the generator of some finite prime p of K. We shall do this via slightly relaxing

the conditions on the classical Selmer group to give us a modified Selmer group which contains the original one.

Through cohomological methods and class field theory, we will be able to completely determine S(πn)(E/K) in

terms of homomorphisms of subgroups of the idèle class group of a certain finite extension of K. In consequence,

we will be able to give a simple condition for when the π-Selmer group is trivial in terms of the ideal class group

and global units of K(E[p]).

2.1 Galois Cohomology of Torsion Points

Assumptions. Throughout this section, we shall assume that F is a field of characteristic zero and E/F is an

elliptic curve with complex multiplication by OK for some quadratic imaginary number field K.

We begin by proving a well-known Lemma in the elementary theory of group cohomology.

Lemma 2.1.1 (Sah’s Lemma). Let G be a group, M a G-module and h an element of the centre of G. Then

Hn(G,M) is annihilated by the endomorphism

σ : M →M

x 7→ xh − x

of M for all n ≥ 0. In particular, if σ is an automorphism then Hn(G,M) = 0 for all n ≥ 0.

Proof. Consider the endomorphism of M given by the action of h. Write h∗ for the induced homomorphism

h∗ : H∗(G,M)→ H∗(G,M) of cohomology groups. It is a standard fact of the cohomology of groups that h∗ = id

and so h∗ − id = 0. On the other hand, let f ∈ Cn(G,M). Then hn acts on f by

hn(f) = f(h−1g1h, . . . , h
−1gnh)h = f(g1, . . . , gn)h

where we have used the fact that h is in the centre of G. Hence h∗ is simply given on the cohomology groups by

the action of h. Therefore, given a cohomology class [f ] ∈ H∗(G,M), we have

[0] = (h∗ − id)[f ] = h[f ]− f

as desired.

Proposition 2.1.2. Let p > 3 be a rational prime and p a finite prime of K lying above p. Given n ∈ N, let Cn

be a subgroup of (OK/pn)
×

and consider OK/pn as a Cn-module via the natural multiplicative action. If Cn is

cyclic or not a p-group then for all i ∈ N we have Hi (Cn,OK/pn) = 0.

3



2.1. Galois Cohomology of Torsion Points 4

Proof. First suppose that Cn is cyclic. Fix h 6= 1 in Cn. Then x 7→ hx − x is an automorphism of OK/pn.

Appealing to Sah’s Lemma, we see that H1 (Cn,OK/pn) = 0.

Now suppose that Cn is not a p-group. Let C ′n be its prime-to-p part. Then for all i ∈ N we have

Hi (C ′n,OK/pn) = 0 since the order of C ′n is prime to the order of OK/pn. By the inflation-restriction sequence,

we have

0 H1
(
Cn/C

′
n, (OK/pn)

C′n
)

H1 (Cn,OK/pn) H1 (C ′n,OK/pn)

whence H1 (Cn,OK/pn) = 0.

Proposition 2.1.3. Let p > 3 be a rational prime, p a finite prime of K lying over p and n ∈ N. If either

OK,p = Zp or E[p] 6⊆ E(F ) then the cohomological restriction map induces an isomorphism

H1(F,E[pn]) ∼= H1(F (E[pn]), E[pn])Gal(F (E[pn])/F )

Proof. By Theorem A.7.2, we have E[pn] ∼= OK/pn. This Theorem furthermore implies thatG = Gal(F (E[pn])/F ) ⊆

(OK/pn)
×

. Now, in the case that OK,p = Zp, we have that G is cyclic. Indeed,

OK�pn ∼=
OK,pn�pnOK,pn

∼= Zp�pnZp
∼= Z�pnZ

which is cyclic. In the case that E[p] 6⊆ E(F ) then G is not a p-group since it has order prime to p.

Now consider the inflation-restriction sequence

0 H1(G,E[pn]G) H1(F,E[pn]) H1(F (E[pn]), E[pn])G H2(G,E[pn]G)

By Proposition 2.1.2, the second and last terms in this sequence are 0 and so we obtain the desired isomorphism.

Proposition 2.1.4. Let p > 3 be a rational prime, p a finite prime of K lying over p and n ∈ N. Let l 6= p be a

rational prime and F a finite extension of Ql. Then the cohomological restriction map induces an injection

H1(F,E)pn ↪→ H1(F (E[pn]), E)pn

Proof. For notational convenience, denote Fn = F (E[pn]). Using the inflation-restriction sequence we obtain an

exact sequence

0 H1(Gal(Fn/F ), E(Fn))pn H1(F,E)pn H1(Fn, E)pn

By Theorem A.7.3, E has good reduction over Fn so E = Ens and E0(Fn) = E(Fn). Proposition A.5.1 then yields

an exact sequence

0 E1(F ) E(Fn) E(Fn) 0

where Fn is the residue field of Fn. Now consider the logarithm map λE : E1(Fn) → OFn . This has finite kernel

of l-power order and maps E1(Fn) onto an open subgroup of OFn . Hence E1(Fn) is a finitely generated profinite

Zl-module. We may view E1(Fn) as an OK-module which is still profinite1 as restricting to an OK-module does

not change the topology on E1(Fn).

We now claim that E1(Fn) is a pro-p OK-module. Indeed, Proposition A.5.7 implies that every α ∈ OK prime

to l is an automorphism of E1(Fn). Fix such an α ∈ OK . Then for all subgroups G of E1(Fn), α acts as a

1Recall that a topological group is profinite if and only if it is compact, Hausdorff and totally-disconnected.
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surjective endomorphism of E1(Fn)/G. If G has finite index in E1(Fn) then α is moreover an automorphism of

E1(Fn)/G. Since this holds for all α ∈ OK prime to l, E1(Fn)/G is a p-group and so E1(Fn) is pro-p.

From the exact sequence above, we see that E1(F ) has finite index in E(Fn) and so the pro-p part of E(Fn)

is finite, say E[pm] for some m ≥ n. We thus have an inclusion

H1(Fn/F,E(Fn))pn ⊆ H1(Fn/F,E[pm]) = H1(F (E[pm])/F,E[pm])

Now note that if E[p] 6⊆ E(F ) then Gal(F (E[pm])/F,E[pm]) is not a p-group. Conversely, if E[p] ⊆ E(F ) then

E has good reduction by Theorem A.7.3 and that the residue characteristic is greater than 3. Appealing to

Corollary 3.17, Fn/F is an unramified extension so, in particular, its Galois group is cyclic. Hence either case

yields H1(F (E[pm])/F,E[pm]) = 0 upon applying Lemma 2.1.2.

2.2 The Relaxed Selmer Group

Assumptions. Throughout this section, we shall assume that L is a number field and E/L is an elliptic curve with

complex multiplication by OK for some quadratic imaginary number field K.

Recall for all non-constant α ∈ OK we have the following commutative diagram

0 E(L)/αE(L) H1(L,E[α]) H1(L,E)α 0

0 E(Lq)/αE(Lq)
∏

q∈MK
H1(Lq, E[α])

∏
q∈MK

H1(Lq, E)α 0

res res

where we define the α-Selmer group S(α)(E) to be the kernel of the dotted homomorphism. In his paper [Coa83],

Coates defined a slightly larger Selmer group which can be calculated relatively easily using cohomological methods

coupled with class field theory.

Definition 2.2.1. Let α ∈ OK . We define the relaxed α-Selmer group to be

S(α)(E) = { c ∈ H1(L,E[α]) | resq(c) = 0 in H1(Lq, E) for all q ∈M -∞
L with (q, (α)) = 1 }

It is immediate from the definitions that S(α)(E) ⊆ S(α)(E). Furthermore, by the usual exactness of the second

row of the above diagram, we also have the equivalent definition

S(α)(E) = { c ∈ H1(L,E[α]) | resq(c) = 0 in H1(Lq, E(Lq)) for all q ∈M -∞
L with (q, (α)) = 1 }

Proposition 2.2.2. Let n ∈ N≥1 and p a finite prime of K prime to 6 and lying over a rational prime p. Suppose

that pn is principal with generator α and that E[pn] ⊆ E(L). Then

S(α)(E/L) = Hom(Gal(M/L), E[pn]))

where M is the maximal p-extension2 of L unramified outside of primes lying above p.

Proof. We first observe that since E(pn) ⊆ E(L), the GL and GLq
-actions on E[pn] are trivial for all finite primes

q of L and so

H1(L,E[pn]) = Hom(GL, E[pn])

H1(Lq, E[pn]) = Hom(GLq
, E[pn])

2Recall that a p-extension of fields is a Galois extension whose Galois group is pro-p
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Now fix a prime q of L not lying over p. Theorem A.7.3 and the fact that the residue characteristic is greater than

3 imply that E has good reduction at p. Appealing to Proposition A.5.8, we see that Lq(E[α])/Lq is unramified.

Letting Iq denote the absolute inertia group of Lq, we see that Iq acts trivially on E[α] whence the image of

E(Lq)/αE(Lq) under the Kummer map is contained in Hom(GLq
/Iq, E[pn]).

Let Fq be the residue field of Lq and q = NL/Q q. We next observe that

GLq�Iq
∼= Gal

(
Fq/Fq

) ∼= lim←−
n∈N≥1

Gal (Fqn/Fq) ∼= lim←−
n∈N≥1

Z�nZ ∼=
∏

rational p

Zp

Suppose we are given a homomorphism ϕ ∈ Hom(GLq
/Iq, E[pn]). Since the finite homomorphic image of a pro-p

group is a p-group, only the Zp-part of GLq
/Iq can contribute to ϕ. By Lagrange’s Theorem, only the Z/piZ-parts

of Zp for 1 ≤ i ≤ Npn contribute to ϕ. We may thus conclude that

Hom
(
GLq�Iq, E[pn]

)
∼= Hom

(
GLq�Iq,

OK�pn
)
∼= OK�pn

Conversely, appealing to Proposition A.5.7 yields

E(Lq)/αE(Lq) ∼= E(Fq)/αE(Fq) ∼= OK�pn

Therefore, the image of E(Lq)/αE(Lq) under the Kummer map is equal to Hom(GLq
/Iq, E[pn]). We then have

that

S(α)(E/F ) = {σ ∈ Hom(GL, E[α]) | σ ∈ Hom(GLq
/Iq, E[α]) for all q ∈M -∞

L with (q, (α)) = 1 }

But this is exactly Hom(Gal(M/F ), E[pn]) as desired.

Corollary 2.2.3. Suppose that E is defined over K and let n ≥ 1 and p be a finite prime of K prime to 6.

Furthermore, suppose that pn is principal with generator α. Denoting Kn = K(E[pn]) and Gn = Gal(Kn/K) we

have

S(α)(E/K) = Hom(Gal(Mn,Kn), E[pn])Gn

where Mn is the maximal abelian p-extension of Kn unramified outside of primes lying above p.

Proof. We claim that S(α)(E/K) = S(α)(E/Kn)Gn . If this were indeed the case then Proposition 2.2.2 would

imply that S(α)(E/Kn) = Hom(Gal(Mn/Kn), E[pn])Gn and the Corollary then follows.

We now prove the aforementioned claim. Since p is prime to 6 (and, in particular, 2 and 3) the map

O×K → (OK/p)× is not surjective. Appealing to Proposition A.7.8 shows that E[p] 6⊆ E(L). We may thus

apply Proposition 2.1.3 to establish an isomorphism

H1(K,E[pn]) ∼= H1(Kn, E[pn])Gn

It is then immediately clear that the image of S(α)(E/K) under this isomorphism is contained in S(α)(E/K).

On the other hand, Proposition 2.1.4 implies that the restriction map

H1(Kq, E(Kq))pn → H1(Kq(E[pn]), E(Kq))pn

is injective for all primes q such that (q, p) = 1. From this we may deduce that every element of H1(K,E[pn]) whose

image under resq is an element of S(α)(E/Kn) is also a member of S(α)(E/K). This shows that S(α)(E/K) =

S(α)(E/Kn)Gn and so the claim is proven.
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This concludes the cohomological calculations needed for the relaxed Selmer group. We observe that by

calculating these relaxed Selmer groups, we have managed to establish q-adic control over the classical α-Selmer

groups for all finite primes q not dividing α. In the sequel, we shall make use of a certain pairing to establish the

remaining p-adic control (for p dividing α) over the classical α-Selmer group.

2.3 The Kummer Pairing

In this section we shall introduce a Kummer pairing which is an analogue of the classical one arising in the theory

of elliptic curves over number fields. We refer the interested reader to [Sil09, p.209] where he or she may find a

construction of the classical Kummer pairing.

Assumptions. Throughout this section, we shall assume that E is an elliptic curve defined over an imaginary

quadratic number field K with complex multiplication by OK . By Proposition A.7.4, this implies that K has

class number one. Furthermore p = πOK shall be a finite prime of K, prime to f, for some generator π. Finally,

[·, F ab/F ] shall refer to the local Artin map; when necessary, we shall write σx = [x, F ab/F ] to ease notation.

Lemma 2.3.1. Let λE : E1(Kp) → pOp,K be the logarithm map. Then λE extends uniquely to a surjective map

E(Kp)→ pOp,K whose kernel is finite and has no p-torsion.

Proof. Recall that λE : E1(Kp) → pOp,K is an isomorphism. Since p is prime to f, K has good reduction at p.

Appealing to Proposition A.5.1 we obtain an exact sequence

0 E1(Kp) E(Kp) E(Fp) 0

where Fp is the residue field of Kp. We thus see that E(Kp)/E1(Kp) is finite. Finally from Proposition A.5.4 we

conclude that E(Kp)/E1(Kp) has no p-torsion.

Definition 2.3.2. Let n ∈ N≥1 and denote Kp,n = Kp(E[pn]). We define the πn-Kummer pairing to be the

map

〈·, ·〉πn : E(Kp)×K×p,n → E[pn]

(P, x) 7→ [x,Kab
p,n/Kp,n]Q−Q

for some Q ∈ E(Kp) such that P = πnQ.

For the rest of this section, we fix the notation in use in the above definition.

Proposition 2.3.3. The Kummer pairing 〈·, ·〉πn is bilinear and well-defined in the following sense:

1. [x,Kab
p,n/Kp,n] acts on Q.

2. The definition of the pairing is independent of the choice of Q.

3. [x,Kab
p,n/Kp,n]Q−Q ∈ E[pn].

Proof. We first show that the Kummer pairing is bilinear. Observe that linearity in the first argument is immediate

so it suffices to show that for x, y ∈ K×p,n and P ∈ E(Kp) we have 〈P, xy〉πn = 〈P, x〉πn + 〈P, y〉πn . Then

〈P, xy〉πn = Qσxσy −Q = (Qσx −Q)σy − (Qσy −Q) = 〈P, x〉σyπn + 〈P, y〉πn
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Now, 〈P, x〉πn ∈ E[pn] and so, in particular, it is fixed by σy whence the linearity claim follows.

To see the first part of the well-definedness claim, it suffices to realise that the extension of Kp,n defined by

adjoining a pre-image of P under the multiplication-by-πn map is abelian. For the second part of the claim, we

observe that any other choice of pre-image of P is of the form Q+R for some R ∈ E[pn]. We then have

(Q+R)σx − (Q+R) = Qσx −Rσx −Q−R = Qσx −Q

where we have used the fact that R is fixed by σx. Finally, we have

πn 〈P, x〉πn = πnQσx − πnQ = Pσx − P

Now, P is fixed by σx so we see that 〈P, x〉πn is a pn-torsion point which establishes the third part of the claim.

Proposition 2.3.4. Given n ∈ N≥1, define the πn-reciprocity map

δn : Kp,n → E[pn]

x 7→ 〈R, x〉πn

where R ∈ E(Kp) satisfies λE(R) = π. Then δn is a surjective Gal(Kp,n/Kp)-equivariant homomorphism and is

the unique such map satisfying

〈P, x〉πn = (π−1λE(P ))δn(x) (2.1)

for all (P, x) ∈ E(Kp)×K×p,n. Moreover, δn also maps O×p,n = O×p,Kp,n
onto E[pn].

Proof. The fact that δn is a homomorphism follows immediately from the linearity of the Kummer pairing in the

second argument. Fix (P, x) ∈ E(Kp)×K×p,n. By definition we have

〈P, x〉πn = [x,Kab
p,n/Kp,n]Q−Q

for some Q ∈ E(K̄) satisfying πnQ = P . We have that λE(πnQ) = λE(P ) = πm for some m ≥ 1. Then

λE(πλE(P )−1πnQ) = π. Define Q′ = πλE(P )−1Q so that λE(πnQ′) = π. Then

〈P, x〉πn = (π−1λE(P )Q′)σx − π−1λE(P )Q′

= π−1λE(P )(Q′σx −Q′)

= π−1λE(P )δn(x)

thereby proving Equation 2.1. The uniqueness of δn then follows immediately from this formula. We next prove

the Galois-equivarience of the reciprocity map. To this end, fix σ ∈ Gal(Kp,n/Kp). Then

δn(xσ) = [xσ,Kab
p,n/Kp,n]Q−Q

= σ[x,Kab
p,n/Kp,n]σ−1Q−Qσ

−1σ

= ([x,Kab
p,n/Kp,n]Qσ

−1

−Qσ
−1

)

= δn(x)σ

where we have used the fact that πnQσ
−1

= (πnQ)σ
−1

= Rσ
−1

= R together with the conjugation property of

Frobenius elements.

It remains to prove the surjection assertions. Since the local Artin maps glue together to give the global Artin
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map, Theorem A.7.5 implies that if x ∈ O×p then [xσ,Kab
p,n/Kp,n] acts on E[pn] via multiplication by x−1. Indeed,

p is prime to f and so E has good reduction at p whence ψE(x) = 1. It then follows that E(Kp) admits no p-torsion

and E[pn] has no proper GKp
-stable subgroups.

Now note that the Kummer pairing induces a map

ϕn : E(Kp)→ Hom(K×p,n, E[pn])

P 7→ 〈P, ·〉πn

It is easy to see that kerϕn = πnE(Kp). Indeed,

ϕn(P ) = 0 ⇐⇒ 〈P, x〉πn = 0 for all x ∈ K×p,n

⇐⇒ [x,Kab
p,n/Kp,n]Q = Q for some Q ∈ E(K̄p) with πnQ = P and for all x ∈ K×p,n

⇐⇒ Q ∈ E(Kp,n) for some Q ∈ E(K̄p) with πnQ = P

⇐⇒ P = 0 with Q ∈ E[pn] or P 6= 0 with Q ∈ E(Kp)

⇐⇒ P ∈ πnE(Kp)

and so we get an injection E(Kp)/πnE(Kp) ↪→ Hom(K×p,n, E[pn]). By Lemma 2.3.1, E(Kp)/πnE(Kp) ∼= OK/pn

and we may thus conclude that im δn 6⊆ E[pn−1]. Since the image of δn is GKp
-invariant, we must therefore have

that im δn = E[pn].

Moreover, δn(Kp,n)/δn(O×p,n) is a quotient of E[pn] admitting a trivial GKp
-action. Since there are no proper

subgroups of E[pn] which are GKp
-stable, we must have that this quotient group is trivial whence δn(O×p,n) = E[pn]

as asserted.

2.4 Establishing p-adic control

In this section we will use the Kummer pairing to establish p-adic control over the α-Selmer group for the remaining

finite prime p dividing α. We will then combine this with the results for the relaxed α-Selmer group to fully

determine the classical α-Selmer group under our working conditions.

Assumptions. Throughout this section, we shall assume that E is an elliptic curve defined over a quadratic

imaginary number field K with complex multiplication by OK so that K has class number one. p = πOK shall

continue to be a finite prime of K, prime to f, for some generator π. We shall write Kn = K(E[pn]) with ring of

integers On and Kp,n and Op,n for the corresponding structures completed at p. Finally, [·, F ab/F ] shall still refer

to the local Artin map.

Theorem 2.4.1. Let CKn be the idèle class group of Kn and consider the subgroup of IKn given by

Un = ker(δn)
∏
q|∞

K×p,n
∏

q-p,∞

O×p,n

Then

S(πn)(E/K) = Hom
(
CKn�Un, E[pn]

)Gal(Kn/K)
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Proof. As in the proof of 2.3.4, we have an injection

ϕn : E(Kp)/πnE(Kp)→ Hom(K×p,n, E[pn])

[P ] 7→ 〈P, ·〉πn

Note that by Equation 2.1, it follows that every element of im(ϕn) descends to a homomorphism on K×p,n/ ker(δn)

so in fact we have an injection

E(Kp)/πnE(Kp) ↪→ Hom(K×p,n/ ker(δn), E[pn])

Since p is prime to f, E has good reduction at p and so Proposition A.5.8 implies that Kp,n/Kp is unramified

whence Gal(Kp,n/Kp) is abelian. Fix σ ∈ Gal(Kp,n/Kp). Then

〈P, x〉σπn = σ[x,Kab
p,n/Kp,n]Q−Qσ

= [x,Kab
p,n/Kp,n]Qσ −Qσ

= 〈P, x〉πn

and so we get an injection

E(Kp)/πnE(Kp) ↪→ Hom
(
K×p,n/ ker(δn), E[pn]

)Gal(Kp,n/Kp)

Conversely, appealing to Lemma 2.3.1 and Proposition 2.3.4 yields E(Kp)/πnE(Kp) ∼= OK/pn ∼= E[pn] and

K×p,n/ ker(δn) ∼= E[pn]. By Part 2 of A.7.5, Hom(E[pn], E[pn])Gal(Kp,n/Kp) are exactly the OK-module homo-

morphisms HomOK (E[pn], E[pn]) ∼= E[pn]. Hence this injection is in fact an isomorphism.

Now let Mn be the maximal p-extension of Kn unramified outside of p. Proposition 2.2.3 now tells us that

S(πn)(E/K) consists exactly of the elements of H1(F,E[pn]) that are in

Hom(Gal(Mn/Kn), E[pn])Gal(Kn/K)

under resq for (q, p) = 1 and in Hom(K×p,n/ ker(δn), E[pn])Gal(Kp,n/Kn) under resp. By class field theory, this is

exactly Hom(CKn/Un, E[pn])Gal(Kn/K) as desired.

Corollary 2.4.2. Let CK1
be the ideal class group of K1 = K(E[p]) and O×1 its group of units. Then S(π)(E/K)

is trivial if and only if Hom(CK1
, E[p])Gal(K(E[p]/K) is trivial and δ1(O×1 ) 6= 0.

Proof. Theorem A.7.9 implies that K1/K is a degree Np − 1 degree extension which is totally ramified above p;

suppose P is the unique prime of K(E[p]) lying above p. Let V = ker(δ1)∩O×p,1, O1 the closure of O1 in Op,1 and

G = Gal(K1/K).

Recall the idealifier I : IK1 → IK1 which sends an idèle to its associated fractional ideal and let π : IK1 → CK1

be the canonical map sending an ideal to its class in CK1
. Write U = (π ◦ I)(K×1 U1) and consider the diagram

with exact rows

O1V K×1 U1 U 1

1 O×p,1 IK1
CK1

π◦I

π◦I

Applying the Snake Lemma to this diagram yields a short exact sequence
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1 O×p,1�O1V
CK1�U1

Cp�U 1

where CK1 is the idèle class group of K1. Expicitly, U is a subgroup of CK1 generated by some power of the class

of P. Now, PNp−1 = p is principal and so

Hom
(
CK1�U,E[p]

)
= Hom(CK1

, E[p])

Combining this with Theorem 2.4.1 and the fact that the functor Hom(·, E[p]) is left-exact, we see that

S(π)(E/K) = 0 ⇐⇒ Hom
(
CK1�U1

, E[p]
)G

= 0

⇐⇒ Hom(CK1
, E[p])G = 0 and Hom

(
O×p,1�O1V

,E[p]

)G
= 0

Now, Proposition 2.3.4 implies that δ1 : O×p,1/V → E[p] is an isomorphism. Recall that E[p] has no proper

Galois-stable submodules and so

Hom

(
O×p,1�O1V

,E[p]

)G
= 0 ⇐⇒ Hom

(
E[p]�V ,E[p]

)G
= 0

⇐⇒ O1 6⊆ V = ker(δ1) ∩ Op,1

⇐⇒ δ1(O1) 6= 0

Putting these two conditions together yields

S(π)(E/K) = 0 ⇐⇒ Hom(CK1 , E[p])G = 0 and δ1(O1) 6= 0

whence the Corollary follows.

It is worth noting that this is indeed a very powerful result. In normal circumstances, the determination of

the Selmer group can be quite difficult. In this case, however, we have a condition that the Selmer group is trivial

in terms of two simpler objects Hom(CK1 , E[p])G and O1. The former consists of three finite groups, namely an

ideal class group, a quotient of OK and the Galois group of a finite Galois extension of number fields. The first

condition is thus effectively computable considering the existence of algorithms with well-determined complexity

to calculate all of these groups involved. The structure of the global units of a number field K is well-known by

Dirichlet’s unit theorem and a fundamental system of units for K is also effectively computable given OK . We

note that while OK is effectively computable, it is not known if it is computable in polynomial-time. We refer

the enthusiastic reader to [Len92] which gives an account of elementary Algorithmic Number Theory and provides

details of the aforementioned algorithms.

In the sequel we shall make use of this Corollary as the final step in the proof of the Coates-Wiles Theorem.

In particular, we shall use the Euler system of elliptic units to bound particular ideal class groups and show that

the above hypothesis of the above Corollary is satisfied. We will then be able to conclude that E(K) is finite by

the exact sequence of Proposition A.6.2 and the Mordell-Weil Theorem.



Chapter 3

Elliptic Units

This chapter will be concerned with elliptic units which are particular global units in abelian extensions of an

imaginary number field K. In some sense, these are a generalisation of cyclotomic units in abelian extensions of

Q. We shall construct them using particular rational functions of torsion points of elliptic curves with complex

multiplication by OK . We shall moreover justify our claim that elliptic units are a generalisation of the cyclotomic

units by showing that they satisfy analogues of well-known properties of the latter. The importance of these units

will become evident when we go on to show their connection with the L-function attached to an elliptic curve.

In the first two sections, we shall study the algebraic theory of these units; in particular their construction

and their properties. In the latter two sections we shall pass to the analytic theory and demonstrate, through the

study of elliptic functions, that we can recover certain values of the L-function in terms of elliptic units.

3.1 The Θ-function

Assumptions. Throughout this section, we shall assume that E is an elliptic curve defined over C with complex

multiplication by OK for some imaginary quadratic number field K of class number 1. We shall denote by a/OK a

non-trivial ideal of OK prime to 6; we shall sometimes refer to this ideal as the auxillary ideal. To ease notation,

if b /OK is any ideal then we shall write E[b]∗ := E[b]\ {OE }.

Definition 3.1.1. Let x and y be Weierstrass coordinate functions for a particular Weierstrass model of E.

Suppose that α ∈ OK is a generator for a. We define the Θ-function of E with respect to the auxillary ideal a

to be the rational function

ΘE,a(Q) = α−12∆(E)Na−1
∏

P∈E[a]∗

(x(Q)− x(P ))−6

Proposition 3.1.2. The Θ-function of E is well-defined in the sense that it is independent of the choice of

generator of a and of the choice of Weierstrass model of E. Furthermore, if L is a number field and E is defined

over L then ΘE,a is defined over L.

Proof. First assume that α′ is any other generator of a. Then α′ = µα for some µ ∈ O×K . By Proposition A.1.7

we know that the exponent of O×K is 12 and so α′−12 = α−12.

To demonstrate the independence from the choice of Weierstrass model, we first suppose that E has Weierstrass

equation y2 = x3 + ax+ b. We now fix another Weierstrass model E′ with coordinate functions x′ and y′ . Then

12
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x = u2x′ and y = u3y′ for some u ∈ C×. Furthermore, we have ∆(E) = u12∆(E′) and |E[a]∗| = Na−1. Therefore

ΘE′,a(Q) = α−12∆(E′)Na−1
∏

P∈E[a]∗

(x′(Q)− x′(P ))−6

= α−12∆(E)Na−1u12(Na−1)
∏

P∈E[a]∗

(x′(Q)− x′(P ))−6

= α−12∆(E)Na−1
∏

P∈E[a]∗

(u2x′(Q)− u2x′(P ))−6

= α−12∆(E)Na−1
∏

P∈E[a]∗

(x(Q)− x(P ))−6

= ΘE,α(Q)

Finally, suppose that E is defined over L. To show that ΘE,a is also defined over L, we need to show that it is

fixed by GL. But α and ∆(E) are both elements of L so they are fixed by GL. Furthermore, E[a]∗ is stable under

the action of GL and so the product is also fixed whence ΘE,a is defined over L.

Remark. We note that the independence of ΘE,a of the choice of Weierstrass model for E is equivalent to ΘE,a

commuting with isomorphisms of elliptic curves.

The following Theorem will be the first key ingredient in the construction of elliptic units. In particular, it

demonstrates that the Θ-function of E can be used to generate points in abelian extensions of K. Furthermore, it

will show that the action of the Galois group of such an extension on these points is again given by the Θ-function.

Theorem 3.1.3. Let b /OK be a non-trivial ideal prime to a and Q ∈ E[b] an OK-gnerator of E[b]. Then

1. ΘE,a(Q) ∈ K(b).

2. Given an ideal c /OK prime to b and c a generator of c we have

[c,K(b)/K]ΘE,a(Q) = ΘE,a(cQ)

Proof. Without loss of generality, we may assume that E is defined over K. Indeed, by the hypotheses of this

section, K has class number 1 and so, in particular, it is its own Hilbert class field. Hence E is isomorphic to an

elliptic curve with Weierstrass model defined over K by Proposition A.7.4; Proposition 3.1.2 further shows us that

it suffices to consider the Θ-function of this curve which is defined over K.

Part 1: Now consider b as a modulus and given a finite prime p ∈MK , define the set

Ub(p) =


1 + pb(p) if p -∞, b(p) > 0

Op,K× if p -∞, b(p) = 0

C× if p | ∞

Let Ub =
∏

p∈MK
Ub(p) which is a subgroup of IK . Fix an idèle x ∈ Ub and, to simplify notation, write σx =

[x,Kab/K]. By Theorem 5.15, we have that ψE(x) is an automorphism of E and Qσx = ψE(Q). By Part 1 of

Theorem 3.1.2, we thus have

ΘE,a(Q)σx = ΘE,a(Qσx) = ΘE,a(ψ(x)Q) = ΘE,a(Q)

But by class field theory, [Ub,Kab/K] = Gal(K/K(b)) and so ΘE,a(Q) is fixed by every K(b)-automorphism of
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K whence ΘE,a(Q) ∈ K(b).

Part 2: Fix an idèle x ∈ IK such that I(x) = c. Since (b, c) = 1, we have xp = 1 for all finite primes p | b. By

Theorem A.7.5 we have that ψE(x) ∈ cO×K and that Qσc = ψE(x)Q. Now, recall that the ray class field K(b) is the

maximal abelian extension of K unramified outside of primes dividing b. In particular, the Artin map [c,K(b)/K]

makes sense and so, by the compatibility of the ideal and idèlic versions of the Artin map, we have that

ΘE,a(Q)σc = ΘE,a(Q)σx = ΘE,a(Qσx) = ΘE,a(ψE(x)Q) = ΘE,a(cQ)

As in the proof of the Theorem 3.1.3 we may assume, without loss of generality, for the rest of this section that

E is defined over K.

Lemma 3.1.4. Let p be a finite prime of K prime to f and let E be endowed with a Weierstrass model that is

minimal at p. Suppose that b and c are non-trivial ideals of OK such that (b, c) = 1. Let B ∈ E[b] have exact

order b and C ∈ E[c] with exact order c. Then

1. If b = pn for some n ∈ N≥1 then

vp(x(B)) =
−2

Npn−1(Np− 1)

2. If b is not a power of p then vp(x(B)) ≥ 0.

3. bc is not a power of p then vp(x(B)− x(C)) = 0.

Proof.

Part 1: Let Ê be the formal group associated to E over Op,K . Let π be the endomorphism of E given by ψE(p)

and [π] be the corresponding endomorphism of Ê. Consider the power series

f(X) =
[πn](X)

[πn−1](X)

in Op,K [[X]]. Now, Theorem A.7.6 implies that π acts as Frobenius on E. Since p is prime to f, E has good

reduction at p so appealing to Proposition A.5.6 shows that f(X) ≡ XNpn−Npn−1

(mod p). Moreover, Proposition

3.14 implies that f(X) ≡ π (mod X). Hence by the Weierstrass Preparation Theorem (see [Ger83]), there exists

a distinguished polynomial e(X) ∈ Op,K [X] of degree Npn−1(Np − 1) and a unit u(X) ∈ Op,K [X] such that

f(X) = e(X)u(X). The two previous conditions imply that e(X) is in fact an Eisenstein polynomial at p.

Now, the reduction of π is the Frobenius endomorphism which is a purely inseparable endomorphism of E.

Hence, Proposition A.5.4 implies that E[pn] ⊆ E1(Kp) ∼= Ê(p) via the logarithm map λÊ . It then follows that

−x(B)/y(B) is a zero of f(X) and, in particular, it is a root of e(X). By the fact that e(X) is an Eisenstein

polynomial and Proposition A.5.2 we then have that

1

Npn−1(Np− 1)
= vp

(
x(B)

y(B)

)
= vp(x(B))− vp(y(B)) = vp(x(B))− 3

2
vp(x(B)) = −1

2
vp(x(B))

and so

vp(x(B)) =
−2

Npn−1(Np− 1)
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as desired.

Part 2: Now suppose that b is not a power of pn. Appealing to Proposition A.5.7, we see that B 6∈ E1(Kp) and

so Proposition A.5.2 implies that vp(x(B)) ≥ 0.

Part 3: Let B,C ∈ E(Fp) be the reductions of B and C. Suppose, for a contradiction, that vp(x(B)−x(C)) > 0.

Then

vp(x(B)− x(C)) > 0 ⇐⇒ x(B) ≡ x(Q) (mod p)

⇐⇒ x(B) = x(C)

⇐⇒ B = ±C

⇐⇒ B ∓ C = OE

⇐⇒ B ∓ C ∈ E1(Kp)

On the other hand, b is prime to c and so the order of B∓C is not a power of p. Applying Proposition A.5.7 then

yields B ∓ C 6∈ E1(Kp) which is clearly a contradiction. We must therefore have that vp(x(B)− x(C)) = 0.

The next theorem is the second key part of the recipe in the construction of the elliptic units. In particular,

it provides a way to generate global units of abelian extensions of K, namely those that coincide with certain ray

class fields of K.

Theorem 3.1.5. Let b / OK be a non-trivial ideal prime to a and B ∈ E[b] an OK-generator of E[b]. If b is a

power of some finite prime p of K then ΘE,a(B) ∈ K(b) is a P-unit for all finite primes P of K(b) not lying over

p. Moreover, if b is not a prime power then ΘE,a(B) is a global unit of K(b).

Proof. Fix a finite prime q of K such that b is not a power of q. Let P be any finite prime of K(b) lying over q.

By Proposition A.7.7, E isomorphic over K to an elliptic curve with good reduction at q. We may thus, in light

of Proposition 3.1.2, assume that E has good reduction at q. In this case, q - ∆(E) and so vP(∆(E)) = 0. Let

n = vP(α) for some generator α of a. Then

vP(ΘE,a(B)) = −12n− 6
∑

P∈E[a]∗

vP(x(B)− x(P ))

= −12n− 6
∑

P∈E[pn]∗

vP(x(B)− x(P ))− 6
∑

P∈E[a]\E[pn]

vP(x(B)− x(P )) (3.1)

First consider the third term of the above expansion. By hypothesis, B does not have order a prime power.

Moreover, neither can P since n is the greatest power of p dividing a. Part 3 of Lemma 3.1.4 then implies that

this term vanishes.

Now consider the second term of the expansion. We observe that we can write it in the form∑
P∈E[pn]∗

vP(x(B)− x(P )) =

n∑
i=1

∑
P∈E[pi]\E[pi−1]

vP(x(B)− x(P ))

where we understand E[p0] = {OE }. Now, B does not have order exactly a power of p and so vP(x(Q)) ≥ 0 by

Lemma 3.1.4. Furthermore, each P ∈ E[pi]\E[pi−1] has order exactly pi. Appealing once more to Lemma 3.1.4
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and using the valuation axioms, we then have that∑
P∈E[pn]∗

vP(x(B)− x(P )) =

n∑
i=1

∑
E[pi]\E[pi−1]

−2

Npi−1(Np− 1)

=

n∑
i=1

(Npi−1(Np− 1))
−2

Npi−1(Np− 1)

= −2n

where we have used Proposition A.7.2 to calculate the cardinality of E[pi]\E[pi−1]. Inserting this back into

Equation 3.1 yields vP(ΘE,a(B)) = 0 and so ΘE,a(B) is a P-unit. In the case that b is a power of a finite prime

p of K, we see that ΘE,a(B) is a P-unit for all finite primes P of K(b) not lying over p. In the case that b is not

a prime power then ΘE,a(B) is a P-unit for all finite primes P of K(b). But this is exactly what it means for

ΘE,a(B) to be a global unit and so the Theorem is proven.

3.2 A Distribution Relation

We will now show that the Θ-function satisfies an analogue of the so-called distribution relation of cyclotomic

units. We recall that a cyclotomic unit is a unit in a number field given by a product of terms ζan − 1 where ζn is

an nth root of unity and 0 < a < n. In particular, the group of cyclotomic units forms a subgroup of finite index

in the global units of a cyclotomic field. If we define ga = e2πia − 1 where a is a rational number prime to some

rational prime p then we have the distribution relation
∏
bp=a gb = ga. For more details on cyclotomic units, we

encourage the reader to see [Lan90, §6.3].

Assumptions. Throughout this section, we shall assume that K is an imaginary quadratic field and E is an elliptic

curve defined over K with complex multiplication by OK . As before we may assume, without loss of generality,

that K has class number 1. We let a /OK be the auxilliary ideal prime to 6.

Lemma 3.2.1. Θ(E, a) admits the divisor

div(ΘE,a) = 12Na[OE ]− 12
∑

P∈E[a]

[P ]

Proof. Fix a Weierstrass model of E with coordinate functions x and y. By the elementary theory of elliptic curves

(see [Sil09, III.3.1]), the x-coordinate is an even rational function with exactly one pole at OE of order 2. We

therefore see that the factor x− x(P ) in the Θ-function admits the divisor [P ] + [−P ] + 2[OE ]. It follows that

div(ΘE,a) = −6
∑

P∈E[a]∗

[P ] + [−P ]− 2[OE ]

= 12
∑

P∈E[a∗

[OE ]− 6
∑

P∈E[a]∗

[P ] + [−P ]

= 12(Na− 1)[OE ]− 12
∑

P∈E[a]∗

[P ]

= 12Na[OE ]− 12
∑

P∈E[a]

[P ]

Theorem 3.2.2 (Distribution Relation). Let (β) = b / OK be an ideal prime to a. Then for all Q ∈ E(K) we
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have ∏
B∈E[b]

ΘE,a(Q+B) = ΘE,a(βQ)

Proof. We first consult Proposition 3.1.2 to see that both sides of the above equation are rational functions of E

defined over K. We claim that they, in fact, have the same divisor. If this were the case, then their ratio would be

a constant in C×. It would then suffice to show that such a constant would be equal to 1 to establish the Theorem.

Applying Lemma 3.2.1 to the left hand side yields

div

 ∏
B∈E[b]

ΘE,a(Q+B)

 =
∑

B∈E[b]

div(ΘE,a(Q+B)))

=
∑

B∈E[b]

12Na[B]− 12
∑

P∈E[a]

[P +B]


= 12Na

∑
B∈E[b]

[B]− 12
∑

Q∈E[ab]

[Q]

On the other hand, we immediately have

div(ΘE,a(βQ)) = 12Na
∑

B∈E[b]

[B]− 12
∑

Q∈E[ab]

[Q]

Hence, by the reasoning above, the quotient of the left hand side by the right hand side is some constant λ ∈ C×.

Now let α be a generator of a. We have that

λ =

∏
B∈E[b] ΘE,a(Q+B)

ΘE,a(βQ)

=

∏
B∈E[b] α

−12∆(E)Na−1
∏
P∈E[a]∗(x(Q+B)− x(P ))−6

α−12∆(E)Na−1
∏
P∈E[a]∗(x(βQ)− x(P ))−6

=
α−12Nb∆(E)Nb(Na−1)

∏
B∈E[b]

∏
P∈E[a]∗(x(Q+B)− x(P ))−6

α−12∆(E)Na−1
∏
P∈E[a]∗(x(βQ)− x(P ))−6

=
∆(E)(Na−1)(Nb−1)

∏
B∈E[b]

∏
P∈E[a]∗(x(Q+B)− x(P ))−6

α12(Nb−1)
∏
P∈E[a]∗(x(βQ)− x(P ))−6

Evaluating this ratio at Q = OE shows that

λ =
∆(E)(Na−1)(Nb−1)

α12(Nb−1)β12(Na−1)

∏
B∈E[b]∗

∏
P∈E[a]∗

(x(B)− x(P ))−6

where we considered the Laurent expansion of the x-coordinate function to pull out the β term. Now write λ = γw

where

γ =
∆(E)(Na−1)(Nb−1)/w

α12(Nb−1)/wβ12(Na−1)/w

∏
B∈E[b]∗

P∈E[a]∗/±1

(x(B)− x(P ))−12/w

where we have used the fact that (a, 6) = 1 to write the product in its compact form. Denote w = |O×K |. By

Proposition A.1.7, we know that w is either 2, 4 or 6 and that O×K is annihilated by exponentiation by w. It

therefore suffices to show that γ ∈ O×K .

To this end, fix any finite prime p of K along with an extension vp of the p-adic valuation to K. By Proposition

A.7.7 and Proposition 3.1.2, we may assume that E has good reduction at p so that vp(∆(E)) = 0. Since a and b
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are coprime, we may assume, without loss of generality, that p - a. Denote m = vp(β). Then

wvp(γ)

12
= −(Na− 1)m−

∑
B∈E[b]∗

P∈E[a]∗/±1

vp(x(B)− x(P ))

We observe that for P ∈ E[a]∗/± 1 we have∑
B∈E[b]∗

vp(x(B)− x(P )) =
∑

B∈E[pm]∗

vp(x(B)− x(P )) +
∑

B∈E[b]\E[pm]

vp(x(B)− x(P ))

Since a is prime to p, Part 2 of Lemma 3.1.4 immediately implies that the term∑
B∈E[b]\E[pm]
P∈E[a]∗/±1

vp(x(B)− x(P ))

vanishes. The Lemma furthermore gives us

∑
B∈E[pm]∗

P∈E[a]∗/±1

vp(x(B)− x(P )) =
∑

P∈E[a]∗/±1

 m∑
i=1

∑
B∈E[pi]\E[pi−1]

vp(x(B)− x(P ))


=

∑
1≤i≤m

P∈E[a]∗/±1

−2(Npi −Npi−1)

(Npi −Npi−1)

= −m(Na− 1)

Putting this together shows that vp(γ) = 0. But p was arbitrary and so γ ∈ O×K whence λ = 1 as claimed.

Corollary 3.2.3. Let b/OK be an ideal prime to a and B ∈ E[b] of order exactly b. Given a finite prime (π) = p

of K dividing b, define the ideal b′ to be the one given by dividing b out by p. If the natural map O×K → (OK/b′)×

is injective then

NK(b)/K(b′) ΘE,a(B) =

 ΘE,a(πB) if p | b′

ΘE,a(πB)1−((K(b′)/K),p)−1

if p - b′

Proof. To ease notation, denote B = (OK/b)× and B′ = (OK/b′)×. Consider the diagram with exact rows

1 O×K O×K 1

1 1 + b′B B B′

By the Snake Lemma, we then have a short exact sequence

1 1 + b′B B�O×K
B′�O×K

1

On the other hand, K has class number one and so by Theorem A.1.2 we have a short exact sequence1

1 O×K B Cb
K 1

where we are viewing b as a modulus of K. We also obtain a similar sequence for b′. We thus see that B/(O×K)

and B′/(O×K) are the ray class groups modulo b and b′ respectively. In light of this, we now have a short exact

sequence

1Note that in both exact sequences, we are slightly abusing notation - we intend to quotient out by the image of O×
K in the

corresponding quotient groups.
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1 1 + b′B Cb
K Cb′

K 1

By Galois Theory, we thus see that 1+b′B ∼= Gal(K(b)/K(b′)) = G. Given g ∈ 1+b′B, denote by σg the element

of G under this correspondence. By Part 2 of Theorem 3.1.3 and the definition of the norm we have

NK(b)/K(b′) ΘE,a(B) =
∏
g∈G

ΘE,a(B)σg =
∏
g∈G

ΘE,a(gB)

We now observe that

{ gB | g ∈ G } = {Q ∈ E[b] | πQ = πB,Q /∈ E[b′] }

In the case that p | b′ then the above set equals {B +Q | Q ∈ E[p] } and so the distribution relation implies that

NK(b)/K(b′) ΘE,a(B) =
∏

Q∈E[p]

ΘE,a(B +Q) = ΘE,a(πB)

Now in the case that p - b′ then the above set equals {B +Q | Q ∈ E[p], Q 6≡ −B (mod E[b′]) }. Choosing

P ∈ E[p] such that B + P ∈ E[b′], we have

ΘE,a(B + P ) NK(b)/K(b′) ΘE,a(B) = ΘE,a(B + P )
∏

Q∈E[p]
Q6≡−B (mod E[b′])

ΘE,a(B +Q) = ΘE,a(πB)

Appealing to Part 2 of Theorem 3.1.3, we have that

ΘE,a(B + P )((K(b′)/K),p) = ΘE,a(πB + πP ) = ΘE,a(πB)

whence

NK(b)/K(b′) ΘE,a(B) = ΘE,a(πB)1−((K(b′)/K),p)−1

as required.

We end this section by noting that the above Corollary is yet another generalisation of a particular property

of cyclotomic units. Indeed, let ζn be a primtive nth root of unity for some n ∈ N>1. Then for any rational prime

p we have

NQ(ζmp)/Q(ζm) ζmp − 1 =

 ζm − 1 if p | m

(ζm − 1)1−((Q(ζm)/Q),p)−1

if p - m

This striking similarity between cyclotomic units and the units we have constructed in this chapter is exactly what

will motivate our definition of Euler systems. The axomatisation of these phenomenae will allow us to study these

objects in full generality.

That being said, we would like to further build upon this theory before we fully define elliptic units. Indeed,

we would like for our units to be related, in some way, to certain values of the Hecke L-function attached to an

elliptic curve with complex multiplication. This is exactly what we shall accomplish in the rest of this chapter.

3.3 The Eisenstein-Weierstrass Connection

In the spirit of Grothendieck’s philosophy of Géométrie Algébrique et Géométrie Analytique we now shift perspect-

ive to the analytic theory. In this section, we will study the connection between the Weierstrass and Eisenstein
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theories of elliptic functions. In particular, we shall show that we can express the Θ-function in terms of certain

Eisenstein series.

Assumptions. Throughout this section, we shall assume that K is an imaginary quadratic field and E is an

elliptic curve defined over K with complex multiplication by OK so that K has class number 1. We continue

to let (α) = a / OK be the auxiliary ideal prime to 6. We let Λ ⊆ C be the lattice associated to E under the

correspondence of Theorem A.4.2.This correspondence also implies that OKΛ = Λ so we can choose Ω ∈ C× so

that Λ = ΩOK . Furthermore, by Proposition A.7.2, we have that E[a] corresponds to a−1Λ/Λ. To once again

ease notation, we shall write a−1Λ/Λ∗ = (a−1Λ/Λ)\ { 0 }. After choosing a Weierstrass model of E, we fix an an

analytic isomorphism

ξ : C�Λ→ E(C)

z 7→ (℘(z; Λ), ℘′(z; Λ)/2)

and denote

ΘΛ,a(z) = (ΘE,a ◦ ξ)(z) = α−12∆(Λ)Na−1
∏

u∈a−1Λ/Λ∗

(℘(z; Λ)− ℘(u; Λ))−6

Definition 3.3.1. Let L ⊆ C be a lattice. We define the fundamental θ-function of L to be

θ(z;L) = ∆(L)e−6η(z;L)zσ(z;L)12

Lemma 3.3.2. Let L ⊆ C be a lattice. Then θ(z;L) is L-perioidic.

Proof. We need to show that for all w ∈ L we have θ(z + w;L) = θ(z;L). To this end, fix w ∈ L. By Proposition

A.4.1 we have

θ(z + w;L) = ∆(L)e−6η(z+w;L)(z+w)σ(z + w;L)12

= ∆(L)e−6η(z+w;L)(z+w)ψ(w)12e12η(w)(z+w/2)σ(z;L)12

where ψ(w) = 1 if w ∈ 2L and −1 if w 6∈ 2L. A routine, yet somewhat lengthy, calculation shows that the

exponent of the exponential reduces to −6η(z;L)z

Proposition 3.3.3. Consider the function

f(z) =
θ(z; Λ)Na

θ(z; a−1Λ)

Then f(z) is a rational function on E defined over C and is equal to ΘΛ,a(z).

Proof. By Lemma 3.3.2, f(z) is Λ-periodic. By inspection and the properties of the other functions involved in f ,

we see that f is holomorphic and so, in particular, it is an elliptic function. Appealing to Proposition A.4.3 shows

that f(z) is a rational function of E, defined over C.

To prove the second claim, we first note that by Proposition A.4.1, σ(z; Λ) has a simple zero for every z ∈ Λ

and no other zeroes. Hence f admits the divisor

12Na[0]− 12
∑

u∈a−1Λ/Λ

[u]

as a function on C/Λ. By Lemma 3.2.1, this divisor is equal to that of ΘΛ,a and so their ratio must be some

constant λ ∈ C×. Furthermore, ∆(a−1Λ) = α12∆(Λ) and from this we deduce that f(z) has Laurent expansion
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with first term

α−12∆(Λ)Na−1z12(Na−1)

On the other hand, it is immediately obvious from Lemma 3.2.1 that ΘΛ,a also has Laurent expansion with the

same first term whence λ = 1 and f(z) = ΘΛ,a(z) as desired.

Definition 3.3.4. Let L ⊆ C be a lattice. For all k ∈ N≥1, we define the Eisenstein series attached to L of

weight k to be the function

Ek(z;L) = lim
s→k

∑
w∈L

(z + w)k

|z + w|2s

where we understand the limit to mean evaluation of the analytic continuation of the series at s = k. We note

that if k ≥ 3 then

Ek(z;L) =
∑
w∈L

1

(z + w)k

Proposition 3.3.5. Let L ⊆ C a lattice. Then for all k ∈ N≥3, we have

E1(z;L) = ζ(z;L)− s2(L)z −A(L)−1z

E2(z;L) = ℘(z;L) + s2(L)

Ek(z;L) =
(−1)k

(k − 1)!

(
d

dz

)(k−2)

℘(z;L)

Proof. We shall only provide a sketch of the proof of this Proposition; for further details, see [GS81, Proposition

1.5].

First suppose that k = 1. Consider the function

φs(z;L) =
z̄

|z|2s
+

∑
06=w∈L

(
z̄ + w̄

|z + w|2s
− w̄

|w|2s
[
1− sz

w
+
z̄

w̄
(1− s)

])
Then φs is convergent for <(s) > 1/2 and ζ(z;L) = lims→1+ φs(z;L). When <(s) > 3/2, we can rearrange the

terms of the series. In particular, ∑
06=w∈L

w̄|w|−2s = 0

since we may pair up terms with opposite signs. Moreover, the series
∑

06=w∈L |w|−2s has a simple pole at s = 1

with residue A(L)−1. Then

ζ(z;L)− zs2(L) = lim
s→1+

∑
w∈L

(z̄ + w̄)−2s

|z + w|2s
+ zA(L)−1

= E1(z;L) + z̄A(L)−1

which proves the case where k = 1.

Now suppose that k = 2. By [Wei76, VIII §14] we have that d/dzE1(z;L) = −E2(z;L) whence this case follows

from the previous one.

The case where k ∈ N≥3 is immediate from the definition of the Weierstrass ℘-function.

The next theorem provides us with the connection between the Eisenstein and Weierstrass points of view.
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Coupled with results in the next section, this will demonstrate the power of the Eisenstein series as the middle-

man between the Θ-function and the L-function.

Theorem 3.3.6. Given n ∈ N≥1 we have that(
d

dz

)k
log ΘΛ,a(z) = 12(−1)k−1(k − 1)!(NaEk(z; Λ)− Ek(z; a−1Λ))

Proof. By Proposition 3.3.3, we can write the Θ-function in terms of the fundamental θ-function of Λ and so(
d

dz

)k
log ΘΛ,a(z) =

(
d

dz

)k
log

θ(z; Λ)Na

θ(z; a−1Λ)

=

(
d

dz

)(k−1) [
Na

d

dz
log θ(z; Λ)− d

dz
log θ(z; a−1Λ)

]
(3.2)

Assume that k = 1. Then by the definition of θ(z; Λ) we have

d

dz
log θ(z; Λ) = −12s2(Λ)z − 12A(Λ)−1z̄ + 12ζ(z; Λ) = 12E1(z; Λ)

Now assume that k = 2. Then differentiating the above, we have(
d

dz

)2

log θ(z; Λ) = −12s2(Λ)− 12℘(z; Λ) = −12E2(z; Λ)

Finally, suppose that k ∈ N≥3. Then(
d

dz

)k
log θ(z; Λ) =

(
d

dz

)(k−2)

(−12s2(Λ)− 12℘(z; Λ))

= −12

(
d

dz

)(k−2)

℘(z; Λ)

= −12
(k − 1)!

(−1)k
Ek(z; Λ)

= 12(−1)k−1(k − 1)!Ek(z; Λ)

These calculations hold completely analogously for a−1Λ and so the Theorem follows upon substituting each case

back into Equation 3.2.

3.4 The Eisenstein-Hecke Connection and the Φ-function

In this section we shall make good on our promise to complete the other half of the puzzle and demonstrate the

connection between the Eisenstein series defined in the previous section and the Hecke L-function. We recall that

by Proposition 3.1.2, the value of the Θ-function of an elliptic curve E depends only on the isomorphism class of

E over C. In order to have any hope of expressing the L-function of E (which is dependent on E itself) in terms

of the Eisenstein series, we shall have to equip Θ with data dependent on E. We shall do this via constructing a

new rational function Φ on E which is a product of certain translates of the Θ-function. We will then show that

this is enough to determine the desired connection.

Assumptions. We continue to use the assumptions from the last section. We recall that L(ψ̄k, s) is the L-function

associated to powers of ψ̄. Furthermore, if m /OK is an ideal divisible by f and c is prime to m then Lm(ψ̄k, s, c)

is the partial L-function whose defining series is restricted to ideals of OK prime to m such that [b,K(m)/K] =

[c,K(m)/K)].
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Definition 3.4.1. Let F be an OK-generator of E[f]. We define the Φ-function of E to be the rational function

defined over K given by

ΦE,a(Q) = ΦE,a,F (Q) =
∏

σ∈Gal(K(f)/K)

(ΘE,a ◦ τFσ )(Q)

where we understand τP : E → E to be the translation-by-P map on E.

Remark. We note that the action of Gal(K(f)/K) on F ∈ E[f] is well-defined since Part 1 of Theorem A.7.9 implies

that F ∈ E(K(f)).

Proposition 3.4.2. Let Bf be a collection of ideals of OK that are prime to af such that the Artin map induces

a bijection between Bf and Gal(K(f)/K). Then

ΦE,a(P ) =
∏
b∈Bf

ΘE,a(ψE(b)F +Q)

Furthermore, if c / OK is an ideal and Q ∈ E[c] that is not an f-torsion point then ΦE,a(Q) is a global unit of

K(E[c]).

Proof. The first assertion follows immediately from Corollary 5.16ii which asserts that the action of [b,K(f)/K] ∈

Gal(K(f)/K) is given by multiplication by ψE(b).

To see the second assertion, it suffices to realise that ψE(b)F +Q generates a torsion group given by an ideal

that is not a prime power whence Theorem 3.1.5 implies that ΦE,a(Q) is a global unit.

Similar to the Θ-function, we also have an analytic definition for the Φ-function in the form of the following

definition.

Definition 3.4.3. Let f be a generator of f. We define the Φ-function of C/Λ to be

ΦΛ,a(z) = ΦΛ,a,f (z) = ΦE, a, ξ(ω/f)(ξ(z))

The following theorem gives us the connection between the Hecke L-function and the Eisenstein series.

Theorem 3.4.4. Let m / OK be an ideal divisible by f and v ∈ m−1Λ/Λ an m-torsion point of exact order m.

Then for all k ∈ N≥1 we have

Ek(v; Λ) = v−kψE(c)kLm(ψE
k
, k, c)

where c = Ω−1vm.

Proof. Let µ be a generator of m so that we may write v = γΩ/µ for some γ ∈ OK not divisible by m. For

sufficiently large s we have∑
w∈Λ

(v̄ + w̄)k

|v + w|2s
=

∑
w∈ΩOK

(γΩ/µ+ w̄)k

|γΩ/µ+ w|2s
=
∑
w∈OK

(γΩ/µ+ Ωw)k

|γΩ/µ+ Ωw|2s

=
Ω̄k

|Ω|2s
∑
w∈OK

(γ/µ+ w̄)k

|γ/µ+ w|2s

=
Ω̄k

|Ω|2s
|µ|2s

µ̄k

∑
w∈OK

(γ̄ + µw)k

|γ + µw|2s

=
Ω̄k

|Ω|2s
|µ|2s

µ̄k

∑
β∈OK

β≡γ (mod m)

β̄k

|β|2s
(3.3)
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By Theorem A.7.6, ψE(βOK) = βOK so that ψE(OK)/β ∈ O×K . Let Z = {β ∈ OK | ((β), f) = 1 } and define a

multiplicative map

ε : Z → O×K

β 7→ ψE(βOK)

β

By the definition of the conductor f, ε must factor through (OK/f)×. Hence for all β ∈ OK such that β ≡ γ

(mod m) we must have that

β̄ = ψE(βOK)
ψE(γOK)

γ

To ease notation, denote σb = [b,K(m)/K)]. It then follows that

∑
β∈OK

β≡γ (mod m)

β̄k

|β|2s
=

∑
β∈OK

β≡γ (mod m)

ψE
k
(βOK)ψkE(γOK)

|β|2sγk
=
ψkE(γOK)

γk

∑
b /OK
σb=σc

ψE
k
(b)

Nbs
=
ψkE(c)

γk
Lm(ψE

k
, s, c)

Substituting this back into equation 3.3 yields∑
w∈Λ

(v̄ + w̄)k

|v + w|2s
=

Ω̄k

|Ω|2s
|µ|2s

µ̄k
ψkE(c)

γk
Lm(ψE

k
, s, c)

=
Ω̄k

|Ω|2s
|µ|2s

µ̄k
ψkE(c)

vkΩ−kµ
Lm(ψE

k
, s, c)

=
|Ω|2k

|Ω|2s
|µ|2s

|µ|2k
v−kψkE(c)Lm(ψE

k
, s, c)

The Theorem then follows upon passing to the analytic continuation and evaluating at s = k.

Lemma 3.4.5. Let a /OK be an ideal prime to f. Then for all k ∈ N≥1 we have

Ek(z; a−1Λ) = ψE(a)kEk(ψE(a)z; Λ)

Proof. Fix a generator α of a and first suppose that k = 1. Then

E1(z; a−1Λ) = ζ(z; a−1Λ)− s2(a−1Λ)z −A(a−1Λ)−1z̄

=
1

z
+

∑
06=w∈Λ

(
1

z − α−1w
+

1

α−1w
+

z

(α−1w)2

)

−

 lim
s→0+

∑
06=w∈Λ

(α−1w)−2|α−1w|−2s

 z − [π−1 covol
(
C/α−1Λ

)]
z̄

=
1

z
+ α

∑
0 6=w∈Λ

(
1

αz − w
+

1

w
+
αz

w2

)

− α

 lim
s→0+

∑
06=w∈Λ

w−2|w|−2s

 (αz)− |α|
[
π−1 covol (C/Λ)

]
z̄

= αE1(αz,Λ)
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Now suppose that k = 2. We then have that

E2(z;α−1Λ) =
1

z2
+

∑
0 6=w∈Λ

(
1

(z + αw)2
− 1

(αw)2

)
+ lim
s→0+

∑
06=w∈Λ

(αw)−2|αw|−2s

=
1

z2
+ α2

∑
06=w∈Λ

(
1

(αz + w)2
− 1

w2

)
+ α2 lim

s→0+

∑
06=w∈Λ

w−2|w|−2s

= α2E2(αz; Λ)

Finally, suppose that k = 3. It stands that

Ek(z; a−1Λ) =
∑
w∈Λ

1

(z + α−1w)k
= αk

∑
w∈Λ

1

(αz + w)k
= αkEk(αz; Λ)

Appealing to Theorem A.7.6 shows that α = ψE(a) whence the Lemma follows.

Proposition 3.4.6. Let f be a generator of the conductor f. Then for all k ∈ N≥1 we have(
d

dz

)k
log ΦΛ,a(z)

∣∣∣∣∣
z=0

= 12fkΩ−k(−1)k−1(k − 1)!(Na− ψE(a)k)L(ψE
k
, k)

Proof. As usual, fix a collection Bf of ideals of OK prime to af such that the Artin map induces a bijection between

Bf and Gal(K(f)/K). To ease the exposition, let u = Ω/f . By the definition of the Φ-function, Theorem 3.3.6

and Lemma 3.4.5, we have that(
d

dz

)k
log ΦΛ,a(z)

∣∣∣∣∣
z=0

=

(
d

dz

)k
log

∏
b∈Bf

ΘΛ,a(ψE(b)u+ z)

∣∣∣∣∣∣
z=0

=
∑
b∈Bf

(
d

dz

)k
log ΘΛ,a(z)

∣∣∣∣∣∣
z=ψE(b)u

=
∑
b∈Bf

(12(−1)k−1(k − 1)!(NaEk(ψE(b)u; Λ)− Ek(ψE(b); a−1Λ)))

= 12(−1)k−1(k − 1)!

Na
∑
b∈Bf

Ek(ψE(b)u; Λ)− ψE(a)k
∑
b∈Bf

Ek(ψE(ab)u; Λ)


We next observe that the multiplicativity of the Artin map implies that the collection aBf is also in bijection with

Gal(K(f)/K). We may thus assume, without loss of generality, that the ψE(a) factor does not occur in the first

argument of the Eisenstein series in the second term above. Appealing to Theorem 3.4.4 shows that(
d

dz

)k
log ΦΛ,a(z)

∣∣∣∣∣
z=0

= 12(−1)k−1(k − 1)!(Na− ψE(a)k)
∑
b∈Bf

Ek(ψE(b)u,Λ)

= 12(−1)k−1(k − 1)!(Na− ψE(a)k)
∑
b∈Bf

((ψE(b)u)−k)ψE(b)kLf(ψE
k
, k, b)

= 12fkΩ−k(−1)k−1(k − 1)!(Na− ψE(a)k)L(ψE
k
, k)

and so the Proposition is proven.

This Proposition forms a key component in the proof of the Coates-Wiles Theorem. Indeed, it will aid us in

demonstrating the connection between the value of L(ψE , 1) and the elliptic units.

Armed with this result, we are now finally able to define our desired collection of units. These will be at the

very heart of the proof and, as such, we will study them in further generality in the next Chapter.
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Let p be a finite prime of K prime to (f) = f and to 6. Let R be the collection of square-free integral ideals of

OK prime to 6afp. Let Kn = K(E[pn]) and, given r ∈ R, write Kr
n = Kn(E[r]).

Definition 3.4.7. For all n ∈ Nn≥0 and r ∈ R, we define the elliptic units of K to be the elements of K given

by

ηn(r) = ΦΛ,a,f (ψE(pnr)−1Ω)

Proposition 3.4.8. Let n ∈ Nn≥0 and r ∈ R. Then ηn(r) is a global unit in Kr
n and the elliptic units satisfy the

norm compatibility relations

1. For all primes q ∈ R not dividing r we have

NKqr
n /Kr

n
ηn(qr) = ηn(r)1−((Kt

n/K),q)−1

2. NKr
n+1/K

r
n
ηn+1(r) = ηn(r)

Proof. The fact that ηn(r) is a global unit follows immediately from Proposition 3.4.2.

To prove the first relation, we first observe that by Theorem A.7.9 we have that G = Gal(Kqr
n /K

r
n) ∼=

Gal(Kqfr
n /Kfr

n ). Expanding the definitions, we have

NKqr
n /Kr

n
ηn(qr) =

∏
σ∈G

ΛE,a,ξ(ω/f)(ξ(ψE(pnqr)−1Ω))

In order to switch to the algebraic perspective, write F = ξ(Ω/f) and note that Q = ξ(ψE(pnqt)−1Ω) ∈ E[pnqt]

has order exactly pnqt. Let Bf be a collection of ideals of OK , prime to af, that is in bijection with Gal(K(f)/K)

under the Artin map. Furthermore, recall that ψE(q) is a generator for q. By Proposition A.7.8, the natural map

O×K → (OK/pnrf)× is injective. We may thus appeal to Corollary 3.2.3 to see that

NKqr
n /Kr

n
ηn(qr) =

∏
σ∈G

ΦE,a,ξ(ω/f)(ξ(ψE(pnqr)−1Ω))

=
∏
σ∈G

∏
b∈Bf

ΘE,a(ψE(b)F +Q)

=
∏
b∈Bf

Θ(ψE(bq) + ψE(q)Q)1−((K(pnfr)/K),q)−1

= ΦΛ,a(ψE(q)ψE(pnqr)−1Ω)1−((K(pnfr)/K),q)−1

= ηn(r)
1−((Kt

n/K),q)−1

Where in the last equality we used Proposition 3.4.2 to see that ΦΛ,a(ψE(pnr)−1Ω) is a global unit in K(E[pnr])

after which we applied the consistency property of the Artin symbol ((K(pnfr)/K), q)|Kr
n

= ((Kr
n/K), q). The

second relation follows in exactly the same fashion using the first case of Corollary 3.2.3 rather than the second.

3.5 The p-adic Φ-function

Our final task of this chapter shall be to determine the nature of the Φ-function locally. In particular, we will

show that at primes of good reduction p, Φ is an element of OK,p[[Z]]×.

Assumptions. We continue to use the assumptions from the last section. Furthermore, we let p be a finite prime of

K prime to 6f and we introduce the constraint that the auxiliary ideal is also prime to p. Recall that Ê is the formal
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group associated with E, x(Z), y(Z) ∈ OK,p[[X]] are the formal coordinate functions and ω̂E(Z) ∈ 1 +ZOK,p[[X]]

is the formal differential.

Definition 3.5.1. We define the derivative operator on Kp((X)) to be

D =
1

ω̂E(Z)

d

dZ

The following lemma will show us that the above notion of the derivative operator is the correct one to adopt.

Lemma 3.5.2. The derivative operator induces a commutative diagram

K(x(Z), y(Z)) Kp((Z))

K(x(Z), y(Z)) Kp((Z))

D D

Proof. We have the following diagram with first two squares commuting

K(℘(z), ℘′(z)) K(E) K(x(Z), y(Z)) Kp((Z))

K(℘(z), ℘′(z)) K(E) K(x(Z), y(Z)) Kp((Z))

∼

d
dz

∼

D D

∼ ∼

which is obtained by identifying the coordinate functions in the analytic, algebraic and formal settings. Substituting

the Weierstrass coordinate functions into the Weierstrass equation yields the relation

℘′(z)2 = 4℘(z)3 + 4a℘(z) + 4b

Differentiating this relation gives ℘′′(z) = 6℘(z)2 + 2a. But this relation also holds in Kp(℘(z), ℘′(z)) so it suffices

to prove that D(x(Z)) = 2y(Z) and D(y(Z)) = 3x(Z)2 + a. Indeed, we have

D(x(Z)) =
2y(Z)

d/dzx(Z)

d

dz
x(Z) = 2y(Z)

Similarly,

D(y2(Z)) =
1

ω̂E

d

dz
y2(Z) = 2y(Z)D(y(Z))

However, on the other hand we have

D(y2(Z)) = D(x3(Z) + ax(Z) + b) = 6x2(Z)y(Z) + 2ay(Z)

whence D(y(Z)) = 3x(Z)2 + a as desired. Hence the right hand square in the above diagram also commutes.

Theorem 3.5.3. Fix an embedding of K into Kp and let Φp,a be the image of ΦE,a under the induced embedding

of K(x(Z), y(Z)) into Kp((Z)). Then Φp,a ∈ OK,p[[Z]]×. Moreover, for all k ∈ N≥1

Dk log(Φp,a(z))
∣∣
z=0

= 12(−1)k−1(k − 1)!fk(Na− ψE(a)k)Ω−kL(ψE
k
, k)

Proof. Let O be the ring of integers of Kp. It suffices to show that Φp,a ∈ O[[X]]×. Indeed, by definition of

the chosen embedding, we have that Φp,a ∈ Kp((X)) so from the claim we would then be able to deduce that

Φp,a ∈ OK,p[[X]]×.

Let F be an OK-generator of E[f] and Bf a collection of ideals of OK , prime to af, which is in bijection with

Gal(K(f)/K) via the Artin map. Let Q ∈ E[a]∗ and consider the factor (ψE(b)F + P )− x(Q) in the formula for
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ΘE,a(P ). The addition law on E gives

x(ψE(bF ) + P )− x(Q) =
(y(P )− y(ψE(b)F ))2

(x(P )− x(ψE(b)F ))2
− x(P )− x(ψE(b)F )− x(Q)

Now, ψE(b)F is not in the kernel of reduction modulo p and so Proposition A.5.2 implies that vp(x(ψE(bF ))) ≥ 0

and similarly for the y coordinate. Moreover, Part 2 of Lemma 3.1.4 shows that vp(x(Q)) ≥ 0. We now switch

to the formal perspective by replacing x(P ) and y(P ) with the formal Laurent series x(Z), y(Z) ∈ OK,p((X)).

By definition of these series, we have that x(ψE(b)F + Z) − x(Q) ∈ O[[X]]. Evaluating this at Z = 0 yields

x(ψE(b)F )− x(Q) which is an element of O× by Part 3 of Lemma 3.1.4.

Recall that p - af and so ∆(E), α ∈ O×K,p. Hence

Φp,a(Z) = α−12|Bf|∆(E)|Bf|Na−1
∏
b∈Bf

Q∈E[a]∗

(x(ψE(b)F + Z)− x(Q))−6

The second assertion follows immediately upon combining Proposition 3.4.6 with Lemma 3.5.2.



Chapter 4

Euler Systems

Euler systems were introduced by Kolyvagin in his paper [Kol90] in order to place bounds on the ideal class groups

of certain number fields. More concretely, he used the Euler system of cyclotomic units in number fields of the

form F (µn) to bound the ideal class group of F . In [Rub91], Rubin was able to use Kolyvagin’s method with

the Euler system of elliptic units to bound the ideal class groups of abelian extensions of an imaginary quadratic

number field.

In this chapter we shall define Euler systems in enough generality to encompass both the cyclotomic and elliptic

cases. We will then go on to demonstrate properties about these abstract Euler systems which we will then use

to construct certain principle ideals in abelian extensions of our base field. We will then show how these principle

ideals can be used to bound ideal class groups. This theory forms another key part of the proof of the Coates-Wiles

Theorem and we shall make heavy use of it in the sequel in order to calculate certain Selmer groups.

4.1 Axiomatising the norm-compatibility relations

Our goal in this section shall be to provide an axiomatic framework for Euler systems. We aim to capture, as

much as possible, the behaviour that both the cyclotomic and elliptic units exhibit. In particular, we would like

for our abstract Euler systems to mimic the norm-compatibility relations as seen in Proposition 3.4.8. We shall

introduce the so-called universal Euler system of particular number fields K which is an object from which all

Euler systems on K can be constructed1.

Assumptions. Throughout this section, we shall assume that K is a number field. Let p be a finite prime of K

lying above the rational prime p and define Re to be the collection of all square-free ideals of OK that are prime

to both p and the so-called exceptional ideal e. We shall use q to refer to a prime ideal in Re. If r, s ∈ Re, we

shall write r/s to mean the ideal of Re given by dividing r out by the primes dividing s. Finally, except in cases

of ambiguity, we shall simply write R = Re.

Definition 4.1.1. We define a p-system of K to be a tower of abelian extensions

K = K0 ⊆ K1 ⊆ · · ·Kn ⊆ · · ·

together with abelian extensions2 Kr
n/Kn for every n ∈ N≥0 and r ∈ R such that we have the following diagram

of field extensions

1This is a slight exaggeration - we will be able to construct all Euler systems that are of immediate interest. The general theory
of Euler systems is vast and far outside the scope of this essay. The interested reader is encouraged to see Rubin’s book [Rub14].

2Note that we are taking the convention K1
n = Kn.

29



4.1. Axiomatising the norm-compatibility relations 30

Kqr
n

Kr
n Kqr

2

Kn Kr
2 Kqr

1

K2 Kr
1 Kqr

K1 Kr

K

and satisfying Gal(Kr
n/K) = (OK/pnr)× and for all primes q 6= p, the extension Kqr

n /K
r
n has degree Nq − 1, is

totally ramified above primes lying over q and unramified everywhere else.

For the rest of this chapter, unless otherwise stated, we fix an arbitrary p-system of K. We observe that, using

the notation above, we have an exact sequence

1 Gal(Kr
n/Kn) Gal(Kr

n/K) Gal(Kn/K) 1

So that Gr = Gal(Kr
n/Kn) = (OK/r)×. Applying the Chinese Remainder Theorem we obtain a commutative

diagram of isomorphisms

Gr

∏
q|r

(OK/r)×
∏

q|r(OK/q)×

Definition 4.1.2. Let q ∈ R be a prime ideal. We define the q-norm operator in Z[Gq] to be

Nq =
∑
σ∈Gq

σ

Moreover, if r ∈ Re is any ideal then we also define the r-norm operator in Z[Gr] to be

Nr =
∏
q|t

Nq ∈

Definition 4.1.3. Let q ∈ R be a prime ideal. We define the q-derivative operator in Z[Gq] to be

Dq =

Nq−2∑
i=1

iσiq

Moreover, if r ∈ Re is any ideal then we also define the r-derivative operator in Z[Gr] to be

Dr =
∏
q|r

Dq

Lemma 4.1.4 (Telescoping Identity). Let q ∈ R be a prime and σq a generator of Gq. Then

(σq − 1)Dq = Nq− 1−Nq
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Proof. Expanding the definition of Dq, we have that

(σq − 1)Dq =

Nq−2∑
i=1

iσi+1
q −

Nq−2∑
i=1

iσiq = σ2
q − σq − 2σ3

q − 2σ2
q + · · ·+ (Nq− 2) + (Nq− 2)σNq−2

q

= Nq− 2−
Nq−2∑
i=1

σiq = Nq− 1−Nq

We now make a series of definitions in order to construct Euler systems. In particular, we shall obtain a

universal Euler system via the direct limit of individual so-called Euler modules. These Euler modules, together

with the connecting homomorphisms of the direct system that they form, will provide an axiomatisation of the

norm-compatibility relations manifest in elliptic units.

Definition 4.1.5. Given n ∈ N and r ∈ Re, let xn,r be an indeterminate. Let Yn,r be the free Z[Gal(Kr
n/K)]-

module on the indeterminates {xn,s | s | r } and Zn,r the Z[Gal(Kr
n/K)]-submodule of Yn,t generated by the rela-

tions

1. Gr/s acts trivially on the indeterminate xn,s.

2. If qs | r then Nqxn,qs = (1− ((Ks
n/K), q)−1)xn,s

We define the (n,r)-Euler module to be the Gal(Kt
n/K)-module

Xn,r = Yn,r�Zn,r

Definition 4.1.6. Consider the directed set I = N × R with partial order ≤ given by the usual ordering on N

and ideal divisibility on Re. For every (n, s) ≤ (m, r) we define a homomorphism of Euler modules

ϕ
(m,r)
(n,s) : Xn,s → Xm,r

xn,t 7→ NKr
m/K

r
n
xn,t

for t | s. Clearly, ϕ
(n,s)
(n,s) = id and ϕ

(n,t)
(l,r) = ϕ

(n,t)
(m,s) ◦ ϕ

(m,s)
(l,r) for all (l, r) ≤ (m, s) ≤ (n, t) and so the Xn,r form a

directed system with respect to the connecting homomorphisms ϕ. We define the universal Euler system with

respect to the fixed p-system to be

X = lim−→
(n,t)∈ I

Xn,r

with the direct limit taken with respect to the ϕ.

Definition 4.1.7. We define an Euler system of K to be a GK-equivariant map

η : lim−→
(n,r)∈I

Xn,r →
⋃
n,r

Kr
n
×

such that η([Xn,r, xn,r]) is a global unit for all n ∈ N≥0 and t ∈ Re.

Proposition 4.1.8. Specifying an Euler system η : lim−→(n,r)∈I Xn,r →
⋃
n,rK

r
n
× is equivalent to specifying a

collection of global units

{η(n, r) ∈ Kr
n
× | N≥1, r ∈ R}

such that

1. NKqr
n /Kr

n
η(n, qt) = η(n, r)1−((Kr

n/K),q)−1
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2. NKr
n+1/K

r
n
η(n+ 1, r) = η(n, r)

Proof. First suppose that we are given an Euler system η : lim−→(n,r)∈I Xn,r →
⋃
n,rK

r
n
×. Let [Xn,r, xn,r] be an

equivalence class in the universal Euler system. It is clear by the definition of η that the image of this equivalence

class is a global unit in Kr
n so it suffices to demonstrate the norm-compatibility relations. By definition of the

direct limit, we have that xn,r ∼ ϕ(n+1,r)
(n,r) (xn+1,r) and so

[Xn,r, xn,r] = [Xn+1,r,NKr
n+1/K

r
n
xn1,r]

Appealing to the GK-equivariance of η we then have that

η(n, r) = η([Xn,r, xn,r]) = η([Xn+1,r,NKr
n+1/K

r
n
xn1,r])

= NKr
n+1/K

r
n
η([Xn+1,r, xn,r])

= NKr
n+1/K

r
n
η(n+ 1, r)

Now suppose that q ∈ Re is a prime ideal that does not divide r ∈ R. GK-equivariance again shows that

NKqr
n /Kr

n
η(n, qr) = NKqr

n /Kr
n
η([Xn,qr, xn,qr]) = η([Xn,qr,NKqr

n /Kr
n
xn,qr])

= η([Xn,qr, Nqxn,qr])

= η([Xn,qr, (1− ((Kr
n/K), q)−1)xn,r])

= (1− ((Kr
n/K), q)−1)η([Xn,qr, xn,r])

= η(n, r)1−((Kr
n/K),q)−1

Conversely, suppose that we are given a collection of global units

{η(n, r) ∈ Kr
n
× | N≥1, r ∈ R}

satisfying the above conditions. Define a map

η : lim−→
(n,r)∈I

Xn,r →
⋃
n,r

Kr
n
×

by η([Xn,r, xn,r]) = η(n, r) and then extending linearly. By construction, η([Xn,r, xn,r]) is a global unit for all

n ∈ N≥0 and r ∈ Re and is GK-equivariant by linearity. This map is clearly compatible with the structure of the

universal Euler system and so η is an Euler system.

Remark. From now on we shall suppress the use of the equivalence class in the argument of the Euler system and

simply write η(xn,r) or η(n, r).

We will now show that our usual notions of the cyclotomic and elliptic units are subsumed by the definition of

an Euler system.

Example 4.1.9. Let K = Q, e = 1 and (p) = p for some rational prime p. For every integer m > 1, let ζm be a

primitive mth root of unity in Q. We define a p-system on Q by setting Kn = Q(ζpn) and for every integer r ∈ R1

we set Kr
n = Kn(ζr) = K(ζpnr). By the elementary theory of cyclotomic fields, this is indeed a p-system since

Gal(Kr
n/K) = (Z/pnr)× and for every rational prime q 6= l we have that the extension Kqr

n /K
r
n is totally ramified

above primes of Kr
n lying above q and unramified everywhere else.

Now define η(n, r) = ζpnr−1. This is indeed guaranteed to be an Euler system by the usual norm-compatibility

relations for cyclotomic units.
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Example 4.1.10. Let K be an imaginary quadratic number field and E an elliptic curve defined over K with

complex multiplication by OK . Let e = 6af where a /OK is an auxiliary ideal prime to 6f where f is the conductor

of the Hecke character ΨE attached to E. We define a p-system on K by setting Kn = K(E[pn]) and for all r ∈ R

we set Kr
n = Kn(E[r]) = Kn(E[pnr]). This is guaranteed to be a p-system by Theorem A.7.9. Let Λ be the lattice

associated to E and Ω ∈ C× such that Λ = ΩOK . Then by Proposition 3.4.8

η(n, r) = ΦΛ,a(ψE(pnr)−1Ω)

is an Euler system of K where Φ is the Φ-function of E.

Remark. We note that by a result of Yin (see [Yin00]), our theory will be proper only to Q and imaginary quadratic

number fields. Indeed, we shall soon restrict R to ideals r such that every prime dividing r splits completley in

Kn. Yin showed that only Q and imaginary quadratic number fields possess abelian extensions Kq
n/Kn for such

a prime q such that

1. Kq
n/K is abelian.

2. [Kq
n : Kn] = Nq− 1.

3. Kq
n/Kn is totally ramified above primes lying over q and unramified everywhere else.

4.2 Properties

Assumptions. We continue to use the notations and assumptions from the previous section. Furthermore, if

n ∈ N≥1, and M is a power of p, we define Rn,M ⊆ R to be those ideals r such that for every prime q|r we have

that q splits completely in Kn/K and Nq− 1 ≡ 0 (mod M).

Proposition 4.2.1. Let r ∈ Rn,M be an ideal. Then Xn,r is a free Z-module of rank [Kr
n : K]. In particular,

Xn,r has no Z-torsion.

Proof. We may assume, without loss of generality, that Gq is not trivial for all primes q | r. Indeed given such a q

with Gq trivial, let r′ = r/q. Then Kr′

n = Kr
n and Xn,r′ = Xn,r.

Now for every prime q | r and divisor s | r define

B1 = Gal(Kn/K)

Bq = Gq − { 1 }

Bs =
∏
q|s

Bq

We claim that B =
⋃

s|rBsxn,s is a Z-basis for Xn,t. To this end, we first observe that Bq ∪ {Nq } is a Z-basis

for Z[Gq]. Indeed, Z[Gq] has rank |Gq| as a Z-module and |Bq ∪ {Nq } | = |Gq| also. Furthermore, the elements

of Bq ∪ {Nq } are Z-linearly independent as they are a collection of field automorphisms contained in GK . From

this it follows that for all s | r ∏
q|s

Bq ∪ {Nq }

is a Z-basis for Z[Gs]. By induction on the number of primes dividing r, we then see that Xn,r is finitely generated

over Z by B. Indeed, if r = 1 there is nothing to prove so assume that q divides r and write r = qs. By the
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induction hypothesis, Xn,s is finitely generated over Z by
⋃

t|sBtxn,t. Since Nqxn,q = 1 − ((Kn/K), q)−1xn,1, it

follows that Xn,q is finitely generated over Z by
⋃

s|qBsxn,s and so the claim is proven.

To see that Xn,r is infact a free Z-module we first observe that

|B| ≤
∑
s|r

|Bs| =
∏
q|r

|Bq + 1| =
∏
q|r

|Gq| = [Kr
n : K]

Conversely, we claim that Xn,r has rank at least [Kr
n : K] as a Z-module. The Proposition would then follow

immediately.

Consider the homomorphism

ϕ : Yn,r → Z[Gal(Kr
n/K)]

xn,s 7→
∏

q|(r/s)

Nq

∏
q|s

(
|Gq|+ (1− ((Kq

n/K), q)−1 − |Gq|)
Nq

|Gq|

)
for s | r which is trivial on Zn,r. This then induces an homomorphism

Φ : Xn,t ⊗Z Q→ Q[Gal(Kr
n/K)]

It can be shown using the theory of Galois characters that Φ is surjective (see the proof of [Rub14, Proposition

3.1]) so that

rankZ(Xn,r) = dimQ(Xn,r ⊗Z Q) ≥ [Kr
n : K] ≥ |B|

as desired.

Proposition 4.2.2. Let r ∈ Rn,M be an ideal. Then Drxn,r ∈ (Xn,r/MXn,r)
Gr .

Proof. Given a prime q | r, let σq be a generator of Gq. Since the σq generate Gr, it suffices to show that for all q

we have (σq − 1)Drxn,r ∈ MXn,r. We shall prove this by induction on the number of primes dividing r. If r = 1

then the claim is trivial. Now suppose that r = qs for some prime q ∈ Rn,M . Then by the Telescoping Identity

4.1.4 we have that

(σq − 1)Drxn,r = (σq − 1)DqDsxn,r

= (Nq− 1)Dsxn,r −NqDsxn,s

= (Nq− 1)Dsxn,r − (1− ((Ks
n/K), q)−1)Dsxn,s

Now, ((Ks
n/K), q)−1 ∈ Gs whence (1 − ((Ks

n/K), q)−1)Dsxn,s ∈ MXn,s by the induction hypothesis. Moreover,

Nq− 1 ≡ 0 (mod M) and so it follows that

(σq − 1)Drxn,r ≡ 0 (mod MXn,r)

as required.

The following congruence relation was part of Kolyvagin’s original definition of an Euler system. In the following

proof, Rubin showed that it in fact follows from the axioms that we have given above.

Proposition 4.2.3. Let η be an Euler system and q ∈ R a prime. Suppose that k is the largest power of p dividing

Nq− 1 so that Nq− 1 = dpk such that (d, p) = 1. Given n ∈ N≥1 and r ∈ R we have

η(n, qr)d ≡ η(n, r)d((Kr
n/K),q)−1

(mod Q)
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for all primes Q lying over q.

Proof. Suppose that m ≥ n and write G = Gal(Kqt
m/K

qt
n ). Given a prime Q of Kqt

m lying over q, let Dq be the

decomposition group of q in G. In other words, Dq is the intersection of G with the decomposition group of q in

Kqt
m . Fix a set D′ of representatives for the factor group G/Dq and let NDq

=
∑
γ∈Dq

γ and ND′ =
∑
γ∈H′ γ. By

construction we clearly have that NDq
ND′ =

∑
γ∈G γ.

Now, every prime lying above q in Kr
m ramifies totally in Kqr

m and so the Galois group G is equal to the

decomposition group relative to Q and also the inertia group relative to Q. Reducing the left-hand side of the

first norm-compatibility relation, we then have that

NKqr
m /Kqr

n
η(m, qr) = η(m, qr)Nq−1 (mod Q)

On the other hand, we claim that

η(m, r)1−((Kt
n/K),q)−1

≡ (η(m, r)((Kt
n/K),q)−1

)Nq−1

Indeed, this follows immediately by starting with the definition of the Artin symbol, dividing through by η(m, r)

then applying the inverse of the Artin symbol.

Let f be the inertial degree of q in Kr
n/K. Since the Artin symbol ((Kt

n/K), q) is a generator of Dq we have

the following reduction relation

NDq
=

|Dq|−1∑
i=0

(Nqf )i (mod Q)

If we denote this reduction by r then reducing the second norm-compatibility relation modulo Q yields

η(n, r) = η(m, r)NDqND′ ≡ η(m, r)rND′ (mod Q)

η(n, qr) = η(m, qr)NDqND′ ≡ η(m, qr)rND′ (mod Q)

It is immediate that r ≡ |Dq| (mod Nq− 1). Letting m→∞, Dq becomes arbitrarily large so we can always find

an m such that pk|r. Fix such an m ≥ n and write r = pks so that

η(n, qr)d ≡ (η(m, qr))ND′dp
ks (mod Q)

= (η(m, qr)(Nq−1))sND′

= (η(m, r)((Kt
n/K),q)−1

)(Nq−1)sND′

= (η(m, r)ND′ )sd((Kt
n/K),q)−1

= η(n, r)d((Kt
n/K),q)−1

4.3 Constructing Principal Ideals of p-systems

Our next task shall be to employ Euler systems in order to construct certain principal ideals in our p-systems. In

the next section, we will then go onto use these ideals as relations in order to place bounds - and in some cases

annihilate - certain parts of the ideal class group of K1.

Assumptions. We continue to use the notations and assumptions from the previous section. Furthermore, we

assume that the base field of our p-system has class number 13. Finally, fix an integer n ≥ 1 and an ideal

3Recall that the only interesting cases are when the base field is Q or an imaginary quadratic field K. The former clearly has class
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r ∈ RM,r.

Definition 4.3.1. Let η be an Euler system. We define a map

cη,n,r : Gr → Kn(r)×

σ 7→ η

(
(σ − 1)Drxn,r

M

)
which is well-defined by Proposition 4.2.2.

Proposition 4.3.2. Let η be an Euler system. Then cη,n,r is a 1-cocycle.

Proof. To ease notation, write c = cη,n,r. By definition of a 1-cocycle, we are required to show that for all σ, τ ∈ Gr

we have c(στ) = c(σ) + c(τ)σ. Note that by Proposition 4.2.1, Xn,r has no Z-torsion and so, in particular, we have

canonical M th-roots of η((σ − 1)Drxn,r). It then follows that,

c(στ) = η

(
(στ − 1)Drxn,r

M

)
= η

(
(στ + σ − σ − 1)Drxn,r

M

)
= η

(
(τ − 1)Drxn,r

M

)σ
+ η

(
(σ − 1)Drxn,r

M

)
= c(σ) + c(τ)σ

as claimed.

Corollary 4.3.3. Let η be an Euler system. Then there exists a βr ∈ Kr
n
× unique modulo K×n such that

η(xn,r)
Dr

βMr
∈ K×n

Proof. Since Gr is independent of n we observe that, by Hilbert’s Theorem 90, H1(Gr,K
r
n) is trivial. In particular,

the 1-cocycle c = cη,n,r defined above is also a 1-coboundary. We can thus find βr ∈ Kr
n
× such that c(σ) = βσ−1

r

for all σ ∈ Gr. We first claim that such a βr is unique modulo K×n . Indeed, let β′r be another element of Kr
n such

that c(σ) = β′σ−1
r for all σ ∈ Gr. Then (β′r/βr)

σ = β′r/βr whence β′r/βr ∈ K×n and so β′r ≡ βr (mod K×n ). We now

claim that such a βr satisfies the assertion of the Corollary.

To this end, fix an automorphism σ ∈ Gr. Then

σ

(
η(xn,r)

Dr

βMr

)
=

η(xn,r)
σDr

βσMr
=

η(xn,r)
σDr

(βrη(xn,r)(σ−1)Dr/M )M
=

η(xn,r)
Dr

βMr

as desired.

Definition 4.3.4. Let η be an Euler system. We define a map

κn,M : Rn,M → K×n�(K×n )M

r 7→
[
η(xn,r)

Dr

βMr

]
where βr is the element of Kr

n
× as provided by the previous Corollary.

Our motivation in defining such a map κn,M (r) is that we will be able to give a simple description for the ideal

that it generates in terms of the primes dividing r. In particular, we will construct a map φq which will describe

number 1 and we may assume the latter has class number 1 as is the running theme throughout this essay.
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the q-part of the ideal generated by κn,M (r) when q divides r. In order to formalise this, we first define some useful

notations.

To ease the exposition, we denote L = Kn. We let IL be the group of fractional ideals of L written additively

as follows

IL =
⊕

Q∈M -∞
L

ZQ

Furthermore given a finite prime q of K, we let Iq = IqL be similarly defined, with the direct sum ranging over the

finite primes Q of L lying above q. If x ∈ L× let (x)q denote the projection of (x) to Iq, [x] the projection of (x)

to IL/MIL and [x]q the projection of (x) to Iq/MIq.

Proposition 4.3.5. Let q ∈ Rn,M be a prime of K and denote O = OL/qOL. Then there exists a Gal(L/K)-

equivariant homomorphism

φq : L
×
�(L×)M →

Iq�MIq

which induces an isomorphism

φq : O
×
�(O×)M →

Iq�MIq

Proof. Let Q be a finite prime of L lying above q and Q a prime of K lying above Q. We recall that q splits

completely in L/K and that Q totally ramifies in Lq/L. Denote by σQ a lift of the generator σq of Gq to GK so

that σQ is contained in the inertia group of Q.

Our first task is to construct a homomorphism

φQ : L
×
Q�(L×Q)M →

Z�MZ

To this end, define an isomorphism

ψ : Z�MZ→ µM

[a] 7→ (πa/M )1−σQ

where we understand a to be the least positive representative of [a] and π is a generator of q. Now choose a

Frobenius element τ in the Artin symbol ((L/L),Q). Recall that τ is an element of the the decomposition group

of Q in L/L which is isomorphic to the Galois group of the extension of local fields LQ/LQ. Furthermore, any

such τ is conjugate to the other elements of the Artin symbol. We define

φQ : L×Q → Z�MZ

to be the image of τ under the composition

GLQ
→ Hom(L×Q,µ)→ Hom(L×Q,Z/MZ)

σ 7→
(
x 7→ x

σ−1
M

)
where the second map of hom-sets is the one induced by the isomorphism ψ. This is well-defined as it is clearly

independent of the choice of Frobenius element τ . Moreover, φQ is trivial on (L×Q)M so φQ descends to a homo-

morphism

φQ : L
×
Q�(L×Q)M →

Z�MZ
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We can give an explicit description for this map as follows. Let α ∈ L×Q and let Q denote the maximal ideal of the

ring of integers of LQ. Since σQ reduces to the trivial automorphism modulo Q we have that

(α1/M )((L/L),Q)−1 ≡ (β1/M )1−σQ (mod Q) (4.1)

for some β ∈ LQ
×

. Let a = vQ(β). Then

(α1/M )((L/L),Q)−1 = (πa/M )1−σQ (4.2)

and so φQ(α) = a. We next use this to define a map

φq : L
×
�(L×)M →

Iq�MIq

α 7→
∑
Q/q

φQ(α)Q

Finally, this then induces a well-defined isomorphism

φq : O
×
�(O×)M →

Iq�MIq

Gal(L/K)-equivariance then follows immediately from the definition upon recalling that Gal(L/K) permutes the

primes Q lying over q.

Theorem 4.3.6. Let η be an Euler system and q ∈ Rn,M a prime. Then

[κn,M (r)]q =

 φq(κn,M (r/q)) if q | r

0 if q - r

Proof. First suppose that q - r. Then by the definition of the p-system, we have that q is unramified in Lr/L.

Hence for all primes Q′ of Lr lying above primes Q/q in L we have that vQ(κn,M (r)) = vQ′(κn,M (r)). It then

follows that for all Q/q we have vQ(κn,M (r)) ≡ 0 (mod M) where we have used the fact that κn,M (r) is a global

unit times an M th power in Lr×. Therefore, [κn,M (r)]q = 0.

Now suppose that q | r, and write r = qs. Let Q be a prime of L lying above q and σQ a lift of σq so that σQ

is contained in the inertia group of Q where Q is a prime of L lying above Q. Furthermore, let k be the highest

power of p dividing Nq− 1 so that Nq− 1 = dpk with (d, p) = 1. We claim that

(κn,M (r)d/M )1−σQ ≡ (κn,M (s)d/M )((Ls/L),Q)−1 (mod Q′)

where Q′ is any prime of Lr lying above Q. By the definition of the map (in particular, Equations 4.1 and 4.2),

we would then have that

dφQ(κn,M (s) = dvQ(κn,M (r))

Since d is prime to M , it would then follow that φQ(κn,M (s) = vQ(κn,M (r)) which proves the Theorem.

To deduce the claim, we first expand the definition of κn,M . We have that

κn,M (r) =
η(xn,r)

Dr

βMr
, κn,M (s) =

η(xn,s)
Ds

βMs
(4.3)

for some βr ∈ Lr× and βs ∈ Ls× satisfying

βσ−1
r = η((σ − 1)Drxn,r/M), βσ−1

s = η((σ − 1)Dsxn,s/M) (4.4)

for all σ ∈ Gr and σ ∈ Gs respectively. To ease notation, let τq = ((Ls/K), q) and τQ = ((Ls/L),Q). We now
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observe that

(κn,M (r)d/M )1−σQ = ((η(xn,r)
Dr)1/M/βr)

d(1−σQ) (by Equation 4.3)

≡ βd(σq−1)
r (mod Q′) (since η(xn,r) is a global unit)

= η((σq − 1)Drxn,r/M)d (Equation 4.4)

= η((Nq− 1−Nq)Dsxn,r/M)d (Lemma 4.1.4)

= η((Nq− 1)Dsxn,r/M)dη(τ−1
q − 1)Dsxn,s/M)d

= (η(xn,r)
Ds)d(Nq−1)/M/β

d(1−τ−1
q )

s (Equation 4.3)

= (η(xn,r)
Ds)dτqτ

−1
q (Nq−1)/M/β

d(1−τ−1
q )

s

≡ (η(xn,r)
Ds)dτq(1−τ−1

q )/M/β
d(1−τ−1

q )
s (mod Q′)

≡ η(xn,r)
Dsd(1−τ−1

Q )/M/β
d(1−τ−1

Q )
s (mod Q′) (Proposition 4.2.3)

= ((η(xn,r)
Ds/βMs )1/M )d(1−τ−1

Q )

≡ (κn,M (s)d/M )τQ−1 (mod Q′)

thereby proving the claim.

4.4 Bounding the Ideal Class Group of K(E[p])

After constructing the machinery of abstract Euler systems, we now look to applying our theory in the case of

p-systems coming from the running theme throughout this essay: an elliptic curve with complex multiplication. In

particular, we will show how the results from the previous section allow us to place bounds on the Galois-eigenspaces

of a certain ideal class group. This will form yet another key component of the proof of the Coates-Wiles Theorem.

The interested reader is encouraged to view Rubin’s appendix in [Lan90] for the case of cyclotomic units and the

p-system defined over Q.

Assumptions. Throughout this section, we shall assume that E is an elliptic curve defined over an imaginary

quadratic number field K with complex multiplication by OK so that K has class number 1. We fix a prime p of

K prime to f, a /OK an auxiliary ideal prime to 6f and we fix the p-systemof K as defined in Example 4.1.10. As

before, R = Re
n,M will denote the ideals in Re whose prime divisors q split completely in Kn/K and such that

Nq− 1 ≡ 0 (mod M).

Furthermore, we write L = K1 = K(E[p]), µL the group of roots of unity in L and LM = L(µM ) where µM

are the M th roots of unity in an algebraic closure of L. We have that G = Gal(L/K) so that G is cyclic of order

p − 1 or p2 − 1, depending on how p ramifies in K. In order to simplify the exposition, we shall assume that p

splits completely in K so that in fact |G| = p − 1. This restriction is not too severe since, as we shall see in the

sequel, it turns out that this case is enough to deduce the Coates-Wiles Theorem4.

Consider all irreducible Zp-representations of G. Since p splits completely in K, all such representations are

1-dimensional and so, in particular, they are in one-to-one correspondence with the elements of the character group

4The reasoning for this restriction is that if |G| = p2 − 1 then there exist irreducible Zp-representations of G of dimension 2 which
do not correspond to elements of the character group of G (in other words, their characters are not linear characters).



4.4. Bounding the Ideal Class Group of K(E[p]) 40

Ĝ. By Proposition A.3.2 we thus get a decomposition of the group ring

Zp[G] ∼=
⊕
χ∈Ĝ

Rχ

where each Rχ is isomorphic to Zp. If M is a Z[G]-module then we shall write Mχ for (M⊗ZZp)χ, the χ-eigenspace

of the p-adic completion of M .

Lemma 4.4.1. Let CL be the ideal class group of L and M a power of p. Then we have injections

Hom (CL,Z/MZ) ↪−→ Hom(GLM ,Z/MZ)

L×/(L×)M ↪−→ L×M/(L
×
M )M

Proof. Let L(1) be the Hilbert class field of L and φ : Gal(L(1)/L)→ CL the inverse of the Artin map. Then the

composition

GL Gal(L(1)/L) CL

σ σ|L(1) φ(σ|L(1))

induces an injection

Hom(CL,Z/MZ) ↪−→ Hom(GL,Z/MZ)

Now the kernel of the natural map Hom(GL,Z/MZ) → Hom(GLM ,Z/MZ) is Hom(Gal(LM/L),Z/MZ) so it

suffices to show that there does not a non-trivial homomorphism Gal(LM/L)→ Z/MZ. In other words, we need

to show that there does not exist an unramified p-extension of L in LM . We observe that the p-part of Gal(LM/L)

is Gal(LM/L(µp)). But this extension is totally ramified at all primes of L(µp) above p and so the first injection

is proven.

To prove the second injection, note that Proposition A.2.4 provides us with isomorphisms

L×/(L×)M ∼= H1(L,µM )

L×M/(L
×
M )M ∼= H1(LM ,µM )

It hence suffices to show that the cohomological restriction map

H1(L,µM )→ H1(LM ,µM )

is injective. We note that the kernel of this map is H1(Gal(LM/L),µM ). But Sah’s Lemma implies that this is

trivial since Gal(LM/L) is cyclic, acts faithfully on µM and p > 2.

In the previous sections we defined R = Rn,M to be the collection of all ideals in R whose prime divisors q

split completely in Kn and satisfy Nq− 1 ≡ 0 (mod M). Having proved many useful results with such ideals, we

must ask ourselves whether any actually exist. The answer is a resounding yes (at least in the case n = 1) and

the following Proposition will provide us with a healthy stock of primes in R = R1,M . We will then go on to use

these primes to place bounds on the size of CχL.

Proposition 4.4.2. Let κ ∈ L×/(L×)M and ψ a non-trivial homomorphism in Hom(CL,Z/MZ). Then there

exists a prime ideal q ∈ R1,M and a prime Q of L lying above q such that
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1. [κ]q = 0 and ψ([Q]) 6= 0 where [Q] is the class of Q in CL.

2. For all d ∈ Z, dφq(κ) = 0 if and only if κd ∈ (L×)M .

Proof. Consider the Kummer map

L×/(L×)M → Hom(GLM ,µM )

y 7→ (σ 7→ (y1/M )σ−1)

and denote by κ the image of κ under this map. Let e be the order of κ in L×/(L×)M and identify ψ with its

image in Hom(GLM ,Z/MZ) under the injection of Lemma 4.4.1. Consider the two subgroups

H1 = { γ ∈ GLM | ψ(γ) = 0 }

H2 = { γ ∈ GLM | κ(γ) is killed by t < e }

It is immediate from the facts that ψ 6= 0 and Hom(CL,Z/MZ) injects into Hom(GLM ,Z/MZ) that H1 is a proper

subgroup of GLM . Moreover, appealing to Lemma 4.4.1 shows that H2 is also a proper subgroup of GLM since

injective homomorphisms preserve order. We may thus choose a γ ∈ GLM \ {H1 ∪H2 }.

Now, fix a finite Galois extension N of L containing LM and such that κ and ψ are trivial on GL. By the

Chebotarev Density Theorem, there are infinitely many finite primes q of K that are unramified in N and such

that the Artin symbol of q in N/K coincides with the conjugacy class of γ|N . We are thus free to choose such a

prime q not dividing 6afp and such that [κ]q = 0. Let Q be a prime of L lying above q. We claim that q and Q

are the desired primes of the Proposition.

By construction γ fixes L(µm) so by Proposition A.1.1, p splits completely in L(µm). Therefore, a foritiori, p

splits completely in L whence q ∈ R.

To prove the second assertion, observe that the inclusion

Hom(CL,Z/MZ) ↪−→ Hom(GL,Z/MZ)

of Lemma 4.4.1 identifies ψ([Q]) with ψ((L/L),Q) = ψ(γ). Now, γ 6∈ H1 and so ψ([Q]) 6= 0.

Moreover, since γ 6∈ H2, it follows that (κ1/M )((L/L),Q)−1 is a primitive eth root of unity. Hence κ has order

e(Nq− 1) modulo Q and so κ has order e in

(OL/qOL)×/((OL/qOL)×)M

By Proposition 4.3.5, φq is an isomorphism on this factor group whence the second assertion follows.

Lemma 4.4.3. Let χ ∈ Ĝ be a non-trivial character. Then(
O×L�µL

)χ
∼= Rχ

Proof. We first note that since K is totally imaginary, L must be as well. Hence L admits [L : Q] = 2[L : K] = 2|G|

pairs of complex conjugate embeddings into Q and no real embeddings. By Dirichlet’s Unit Theorem, we have

that

O×L�µL ∼= Z|G|−1

Since Q[G] ∼= Q|G|, we have a short exact sequence of Q[G]-modules
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0

(
O×L�µL

)
⊗Z Q Q[G] Q 0

Since Zp is a flat Z-module, tensoring with Zp will preserve this exact sequence. We may thus pass to the

χ-eigenspace to deduce the assertion of the Lemma.

We now arrive at the main Theorem of this Chapter. Effectively, with this result under our belt, the morale of

Kolyvagin and Rubin’s theory can be phrased as follows: the machinery that we have constructed takes as input

an Euler system corresponding to a p-system of K and an irreducible Zp-representation χ of G and outputs an

upper bound on the χ-eigenspace of the ideal class group of L. The proof of this Theorem is rather lengthy but

the main idea will be to use Proposition 4.4.2 to construct a sequence of primes q of K and primes Q/q of L for

which the images in CχL of their classes in CL generate CχL. The classes of these primes will give rise to interesting

relations in CχL which will allow us to deduce an upper bound on the size of | CχL |.

Theorem 4.4.4. Let η be an Euler system and U = Uη = 〈µL,η(1,OK)〉Zp[G]. If χ is an irreducible Zp-

representation of G then

| CχL | ≤
∣∣∣∣(O×L�Uη

)χ∣∣∣∣
Proof. First suppose that χ is the trivial character. Let P be the p-part of CL. We may identify CL⊗ZZp with P

considered as a Zp-module with module structure given by the scalar multiplication( ∞∑
i=0

aip
i

)
· x 7→

∞∑
i=0

aip
ix

which is well-defined since P is annihilated by pn for sufficiently large n. P clearly also has a natural action of G

so it is infact a Zp[G]-module. Since χ is the trivial character, the χ-idempotent is

εχ =
1

|G|
∑
σ∈G

σ−1

which is simply the norm from L to K map (up to a constant). Hence Pχ is in fact that p-part of CK . But CK is

trivial and so we must have that | C×L | = 0.

Now suppose that χ is not the trivial character and denote

M = p

∣∣∣∣(O×K�U)χ∣∣∣∣ | CχL |
Moreover, let O×K ,U and µL denote the images of O×K ,U and µL in L×/(L×)M . By Lemma 4.4.3, (O×K/µL)χ is

a free Rχ/MRχ-module of rank 1. Hence for some t |M we have(
O×K�U

)χ
∼= O

×
K

χ

�Uχ
∼= Rχ�tRχ

Now let ξ ∈ O×K
χ

be an Rχ-generator of O×K
χ
/µχ so that ξ has order M in L×/(L×)M . Then ξt ∈ Uχ. Fix a root

of unity ζ ∈ µL
× so that

ξt = ζa(κ1,M (OK)χ)b

for some a, b ≤ M where we have used the fact that κ1,M (OK) is the image of η(1,OK)χ in L×/(L×)M . Let t0

denote the order of κ1,M (OK)χ. Then ξtt0 = ζa so that M |t0t.

Henceforth, given r ∈ R, we write κ(r) for κn,M (r) ∈ L×/(L×)M . Label the elements of Hom(CχL,Z/MZ) as
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ψ1, . . . , ψk. By Proposition 4.4.2, we inductively define a sequence of prime ideals q1, . . . , qk ∈ R of K as follows.

Suppose that we have constructed primes q1, . . . , qi−1 for i − 1 ≤ k. Let ri =
∏
j≤i qj where we understand

q0 = OK . We then define qi ∈ R to be the prime of K generated by the Proposition using the homomorphism ψi

and the element κ(ri−1)χ. If we let Qi/qi be the primes of L lying above the qi provided by the Proposition and

ci the class of Qi in CL then we have the following two properties:

1. αi(ci) 6= 0

2. dφqi(κ(ri−1)χ) = 0 if and only if (κ(ri−1)χ)d

For all 1 ≤ i ≤ k. We now claim that cχi , . . . , c
χ
k generate CχL as a Zp[G]-module. If this were not the case then let H

be the subgroup generated by the ci over Zp[G]. Then we would always be able to find a non-trivial homomorphism

ψ : CχL /H → Z/MZ. Such a homomorphism would clearly be 0 on the cχi . On the other hand, we must have that

ψ = ψi for some 1 ≤ i ≤ k so ψ(ci) = 0 which contradicts the first property stated above.

Next, let si for 1 ≤ i ≤ k denote the order of cχi in CχL / 〈c
χ
1 , . . . , c

χ
i−1〉 and ti for 0 ≤ i ≤ k − 1 the order of

κ(ri)
χ in L×/(L×)M . We claim that ti−1 | ti. Observe that since Rχ is a free Zp-module of rank 1, we have

[〈cχ1 , . . . , c
χ
i 〉 : 〈cχ1 , . . . , c

χ
i−1〉] = [Rχ : siRχ]

By the fact that the ci generate CχL it then follows that

| CχL | =
k∏
i=1

[Rχ : siRχ]

By Theorem 4.3.6 we have that [κ(ri)
χ]qi = φqi(κ(ri−1)χ). Furthermore, the second property stated above, we

know that dφqi(κ(ri−1)χ) = 0 if and only if (κ(ri−1)χ)d = 0. Hence [κ(ri)
χ]qi has order ti−1 in Iqi/MIqi . On the

other hand, dφqi
(κ(r)χ) = 0 if and only if (κ(ri)

χ)d = 0 and so ti−1|ti as claimed.

We next claim that (ti/ti−1)cχi = 0 in CχL / 〈c
χ
1 , . . . , c

χ
i−1〉. Since (κ(ri)

χ)ti ∈ (L×)M , we can choose zi ∈

L×/(L×)M such that z
M/ti
i = κ(ri)

χζ for some ζ ∈ µL so that(
M

ti

)
[zi]qi = [κ(ri)

χ]qi

and [zi]qi has order ti−1M/ti in (Iqi/MIqi)χ. It is easy to see that (Iqi/MIqi)χ ∼= Rχ/MRχ. Indeed, we have an

isomorphism of Z[G]-modules

Iqi → Z[G]∏
σ∈G

σ(Qi)
eσ 7→

∑
σ∈G

eσσ

where Qi is some prime of L lying above qi. By Part 1 of Theorem 4.3.6 and the previous discussion, it follows

that there exists a unit u ∈ R×χ such that

(zi) ≡ u
ti
ti−1

qχi (mod Iq1 , . . . , Iqi−1 , tiIL)

Since t0|ti and (M/t)|t0 it follows that ti annihilates CχL since M/t does. Projecting the above congruence to CχL,

we then have that (ti/ti−1)cχi = 0 in CχL / 〈c
χ
1 , . . . , c

χ
i−1〉 as claimed.

Hence for all 1 ≤ i ≤ k, si divides (ti/ti−1) so that

| CχL | =
k∏
i=1

[Rχ : siRχ]
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divides

k∏
i=1

[
Rχ :

ti
ti−1

Rχ

]
=

k∏
i=1

[ti−1Rχ : tiRχ] = [t0Rχ : tkRχ]

Now, tk |M and M | tt0 whence [t0Rχ : tkRχ] divides [Rχ : tRχ] = |(O×L /U)χ| and so the Theorem is proven.

Corollary 4.4.5. Let η(n, r) = ηan(r) be the Euler system of elliptic units with respect to an auxiliary ideal a prime

to 6f. If χ is an irreducible Zp-representation of G and η1(OK) 6∈ µχL((O×L )χ)p then CχL is trivial.

Proof. By Theorem 4.4.4, we know that

| CχL | ≤
∣∣∣∣(O×L�Uη

)χ∣∣∣∣
where U is the Zp[G]-module generated by µL and η1(OK). Since (O×K)χ is a p-group, the hypothesis η1(OK) 6∈

µχL((O×L )χ)p ensures that the factor group (O×L /U)χ is trivial.



Chapter 5

The Coates-Wiles Theorem

Our goal is finally in sight; we now have all the tools required in order to tackle the proof of the Coates-Wiles

Theorem. Our plan of attack shall be as follows. We will define a homomorphism of the unit group of a completion

LP of L = K(E[p]) for some prime P above p to E[p] which will provide us with the connection between the

non-vanishing of L(ψ, 1) and the elliptic units. This connection, along with Corollary 4.4.5 will allow us to

annihilate CχEL where χE is the representation of G on E[p]. We will then show that we have an isomorphism

(O×L )χE ∼= (O×L,P)χE . An easy application of the Chebotarev Density Theorem will then allow us to employ these

results, along with Corollary 2.4.2, to annihilate the Selmer group S(ψE(p))(E) whence the Coates-Wiles Theorem

will follow from the Mordell-Weil Theorem.

Assumptions. Throughout this section we shall assume that K is an imaginary quadratic number field and E/K

is an elliptic curve with complex multiplication by OK so that K has class number 1. We fix the following objects

• Λ a lattice in C such that E(C) ∼= C/Λ via the analytic isomorphism ξ and Ω ∈ C× such that ΩOK = Λ.

• (f) = f the conductor of the Hecke character ψE attached to E.

• p a finite prime of K not dividing f lying above a rational prime p > 7 and P the unique prime of L lying

above p.

• M a power of p.

• The p-system of K given by Kr
n = K(E[pnr]) for some r ∈ R = R6af

n,M and denote L = K1, G = Gal(L/K).

• η the Euler system of elliptic units with respect to an auxiliary ideal a /OK prime to 6pf.

Proposition 5.1. There exists a G-equivariant isomorphism

γ : E[p]→ (1 + POL,P)/(1 + P2OL,P)

that induces a homomorphism

δ : O×L,P → E[p]

by composing the natural projection O×L,P → (1 + POL,P)/(1 + P2OL,P) with the inverse of γ.

Proof. Since E has good reduction at p, Proposition A.5.4 implies that E[p] ⊆ E1(Kp) ⊆ E1(LP). By Proposition

A.5.5, we have an isomorphism Ê[p] ∼= E1(LP) with E considered as defined over L. Restricting this to Kp we

get an isomorphism Ê[p] ∼= E[p]. We then define γ to be the composition

E[p] Ê[p] (1 + POL,P)/(1 + P2OL,P)

P −x(P )/y(P )

1+·
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To show that it is injective, observe that

P ∈ ker γ ⇐⇒ −x(P )

y(P )
∈ ker(1 + ·) ⇐⇒ x(P )

y(P )
∈ P2OL,P

Now, the proof of Lemma 3.1.4 implies that vp(x(P )/y(P )) = (Np − 1)−1 whence vP(x(P )/y(P )) = (Np − 1)−2

since the ramification index of p in L/K is 2. This is clearly less than 2 so we must have that P = 0.

Since |E[p]| = Np, the surjectivity of γ will follow if we can show that (1 + POL,P)/(1 + P2OL,P) also has

cardinality Np. Indeed, the P-adic logarithm map provides an isomorphism

(1 + POL,P)/(1 + P2OL,P) ∼= POL,P/P2OL,P ∼= OL,P/POL,P ∼= OK,p/pOK,p

where we have used the fact that p ramifies totally in L/K so that the inertial degree of p in L/K is 1. The

latter clearly has cardinality Np as claimed. The fact that γ is G-equivariant now follows immediately from the

definition.

Lemma 5.2. There exists a prime q of K not dividing 6pf such that Nq 6≡ ψE(q) (mod p).

Proof. Since p > 7, Proposition A.7.8 implies that E[p] ⊆ E(K). We may therefore choose a prime q of K not

dividing 6pf, such that [q,K(E[p])/K] 6= 1. We claim that such a prime q satisfies the assertions of the Lemma.

Indeed, by Thoerem A.7.6, the action of the Artin symbol on E[p] implies that ψE(q) 6≡ 1 (mod p). Conjugating

this congruence yields ψE(q) 6≡ 1 (mod p). Since Nq = ψE(q)ψE(q), multiplying the congruence by ψE(q) shows

that Nq 6≡ ψE(q) (mod p).

Henceforth we shall assume that the auxiliary ideal defining the Euler system of elliptic units is any of the

primes q provided by Lemma 5.2.

Proposition 5.3. The L-function of E associated to ψE satsifies the following properties

1. L(ψE , 1)/Ω ∈ K

2. L(ψE , 1)/Ω ∈ OK,p

3. L(ψE , 1)/Ω ≡ 0 (mod p) if and only if δ(η) = 0

where η = ηq1(OK).

Proof. We recall that ΦΛ,q is a rational function of ℘(z; Λ) and ℘(z; Λ) with K-rational coefficients. Fixing a

Weierstrass model y2 = x3 + ax+ b of E we may differentiate the Weierstrass equation

℘′(z; Λ) = 4℘(z; Λ)3 + 4a℘(z; Λ) + 4b

once to see that ℘′′(z; Λ) also belongs to K(℘(z; Λ), ℘′(z; Λ)). From this it follows that

ΦΛ,q ∈ K(℘(z; Λ), ℘′(z; Λ)) too. By Theorem 3.4.6 we have

d

dz
log ΦΛ,q(z)

∣∣∣∣
z=0

= 12fΩ−1(Nq− ψE(q))L(ψE , 1)

We therefore see that L(ψE , 1)/Ω ∈ K so the first claim is proven.

To prove the second and third assertions, consider the p-torsion point

P = (℘(ψE(p)−1Ω; Λ), ℘′(ψE(p)−1Ω; Λ)/2)
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and let z = −x(P )/y(P ) ∈ P be the image of P in Ê[p] under the isomorphism E[p] ∼= Ê[p]. By the definition of the

Euler system of elliptic units, we have that η = Φp,q(z). Now, Theorem 3.5.3 implies that Φp,q(0), 12fΩ−1(Nq−

ψE(q))L(ψE , 1) ∈ O×K,p. Furthemore we have that

D1 log(Φp,q(X))|X=0 = 12fΩ−1(Nq− ψE(q))L(ψE , 1)

On the other hand, we have

D1 log(Φp,q(X))|X=0 =
(D1Φp,q(X))|X=0

Φp,q(0)

so that we obtain the expansion

Φp,a(X) ≡ Φp,q(0)(1 + 12fΩ−1(Nq− ψE(q))L(ψE , 1)X) (mod X2)

From this, we see that

η = Φp,a(z) ≡ Φp,q(0)(1 + 12fΩ−1(Nq− ψE(q))L(ψE , 1)z) (mod P2)

Applying the homomorphism δ : O×L,P → E[p] yields

δ(η) = (12f(Nq− ψE(q))L(ψE , 1)/Ω)P

Now by Lemma 5.2, Nq − ψE(q) 6≡ 1 (mod p) and so 12f(Nq − ψE(q)) ∈ O×K,p. Hence we can have δ(η) = 0 if

and only if L(ψE , 1)/Ω ≡ 0 (mod p) as required.

Remark. We remark that the first assertion of the Proposition is a special case of Damerell’s Theorem which states

that for all k ∈ N≥1 we have L(ψE
k
, k)Ω−k ∈ K. The proof of the general case follows the exact same reasoning

as the case in which k = 1 after differentiating the Weierstrass equation to show that, in fact, all derivatives of

ΦΛ,q are elements of K(℘(z; Λ), ℘(z; Λ)).

Definition 5.4. Consider the representation of G on E[p]. Then this is an irreducible Zp-representation of G since

E[p] has no proper G-invariant subgroups. Let χE ∈ Ĝ be the corresponding character and RχE the corresponding

direct summand in the decomposition of the group ring Zp[G]. Then E[p] ∼= RχE/pRχE .

Lemma 5.5. µχEL is trivial.

Proof. Suppose, for a contradiction that µχEL is not trivial. Let P be the p-part of µL. In other words, P is

all the (pn)th roots of unity contained in L for n ≥ 1. Explicitly, we may identify µL ⊗Z Zp with P viewed

as a Zp[G]-module with scalar multiplication by Zp given by exponentiation and the usual action of G. This is

well-defined since P is killed by a large enough power of p. Then

µχEL = { ζ ∈ P | σ(ζ) = χE(σ)ζ for all σ ∈ G }

by Part 3 of Proposition A.3.1. We claim that µχEL consists of pth roots of unity. Indeed fix ζ ∈ µχEL . Since χE(σ)

is killed by p, we have that σ(ζp) = ζp for all σ ∈ G. If ζp 6= 1 then we would have a non-trivial (pn)th root of

unity ζp ∈ K for some n ≥ 1. But this is impossible as p > 7 and K is an imaginary quadratic number field whose

only possible roots of unity are ±1 or 3rd, 4th or 6th roots of unity. Now since G is isomorphic to E[p]×, for all
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P ∈ E[p]× there exists σP ∈ G such that χE(σP ) = P . Given ζ ∈ µχEL we define a homomorphism

ρζ : E[p]→ µp

P 7→ χE(σP )ζ

where we set ρζ(0) = OE which is clearly GK-equivariant and so is an element of Hom(E[p],µp)
GK . Now, the Weil

pairing (see [Sil09, §III.8]) provides a GK-equivariant isomorphism E[p] ∼= Hom(E[p],µp). From the discussion

above, there exists a non-trivial homomorphism in Hom(E[p],µp)
GK and so E[p]GK is non-trivial. But this is a

contradiction to Proposition A.7.8. Hence µχEL is trivial.

Theorem 5.6. Let CL be the ideal class group of L. If L(ψE , 1)/Ω ∈ O×K,p then CχEL is trivial.

Proof. Let η = ηq(OK). We claim that ηχE 6∈ µχEL ((O×L )χE )p. If this were indeed the case then we would be able

to conclude, by Corollary 4.4.5, that CχEL = 0. Appealing to Lemma 5.5, we see that µχEL is trivial and so η 6∈ µχEL .

We now show that ηχE 6∈ ((O×L )χE )p. Indeed, since δ is G-equivariant, we have that δ(ηχE ) = δ(η)χE . Since the

image of δ is contained in E[p] and E[p]χ = 0 for any χ 6= χE we have that δ(η)χE = δ(η). Since L(ψ, 1)/Ω is a

p-adic unit, Part 3 of Proposition 5.3 implies that δ(η) 6= 0. It follows that ηχE is not contained in the kernel of δ

which certainly contains ((O×L )χE )p and so ηχE 6∈ ((O×L )χE )p as claimed.

Theorem 5.6 gives us one half of the hypothesis of Corollary 2.4.2. In order to satisfy the second half, we prove

the following Lemma and Theorem.

Lemma 5.7. Suppose that p splits completely in K and TrK/Q(ψE(p)) 6= 1. Then µp 6⊆ LP and (O×L,P)χE is a

free RχE -module of rank one.

Proof. Since the local Artin map is given in terms of the global one, Theorem A.7.5 implies that [ψE(p), LP/Kp] =

1. Moreover, since p is totally ramified in Qp(µp), local Class Field Theory implies that [p,Qp(µp)/Qp] = 1.

Now suppose, for a contradiction, that µp ⊆ LP so that Kp(µp) ⊆ LP. Note that [Kp(µp) : Kp] = p−1. But p

splits completely in K so, in fact, [Kp(µp) : Kp] = Np−1 = [LP : Kp]. It then follows that [p/ψE(p), LP/Kp] = 1

whence p/ψE(p) ≡ 1 (mod p).

Observe that TrK/Q(ψE(p)) = ψE(p) +ψE(p) = ψE(p) + p/ψE(p) where we have used the norm map to obtain

the relation p = ψE(p)ψE(p). Therefore,

TrK/Q(ψE(p)) ≡ 1 (mod p)

On the other hand, Part 3 of Theorem A.7.6 implies that ψE(p) acts as Frobenius on E(Fp). Hence by Hasse’s

Theorem (see [Sil09, §V.1]), we have that |TrK/Q(ψE(p))| ≤ 2
√
p < p − 1 so we must have that, in fact,

TrK/Q(ψE(p)) = 1. But this is a contradiction to the hypothesis of the Lemma and so µp 6⊆ LP.

Now, the P-adic logarithm map provides us with an isomorphism O×L,P ⊗Zp Qp ∼= OL,P ⊗Zp Qp. The latter is

isomorphic to LP which is, in turn, isomorphic to Kp[G]. From this we deduce that (O×L,P)χE is some quotient of

RχE
∼= Zp. But O×L,P ⊗Zp Qp ∼= L×P has no p-torsion since µp 6⊆ LP whence (O×L,P)χE ∼= RχE .

Theorem 5.8. Suppose that p splits completely in K,L(ψE , 1)/Ω ∈ O×K,p and TrK/Q(ψE(p)) 6= 1. Then (O×L )χE ∼=

(O×L,P)χE .
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Proof. The natural inclusion map (O×L )χE ↪→ (O×L,P)χE is clearly injective so it suffices to show that it is surjective.

Following the same argumentation of the proof of Theorem 5.6, Part 3 of Proposition 5.3 implies that ηχE 6∈

((O×L )χE )p ⊆ ((O×L,P)χE )p and so (O×L )χE 6⊆ ((O×L,P)χE )p.

Now, by Lemma 4.4.3, we have that (O×L /µL)χE is a free RχE -module of rank one. Appealing to Lemma 5.5

we then see that (O×L )χE is also a free RχE -module of rank one. Hence (O×L )χE must be of the form pnZp for some

n ≥ 0. By the above discussion, it follows that n = 0 and so the map must be a surjection.

Theorem 5.9 (Coates-Wiles). If L(ψE , 1) 6= 0 then E(K) is finite.

Proof. By the Chebotarev Density Theorem, there are infinitely many primes p of K such that ((K/Q), p) = 1.

We may choose such a prime p not dividing

2 · 3 · 5 · 7 · (L(ψE , 1)/Ω)f

and such that TrK/Q(ψE(p)) 6= 1. Let p be the rational prime lying below p. Then p > 7 and splits completely in

K and L(ψE , 1)/Ω is a unit at p. Let P be the unique prime of L lying above p. By Theorem 5.6, CχEL is trivial.

Moreover, Theorem 5.8 yields an isomorphism (O×L )χE ∼= (O×L,P)χE .

We would now like to apply Corollary 2.4.2 in order to annihilate the Selmer group S(ψE(p))(E). To this end,

we must show that Hom(CL, E[p])G = 0 and δ1(O×L ) 6= 0.

Let f ∈ Hom(CL, E[p])G be a non-trivial homomorphism. We claim that f can only be non-trivial on CχEL . Let

χ 6= χE be another irreducible Zp-representation of G and let x ∈ CχL. By G-equivariance and idempotency of εχ

we have

f(x) = f(εχx) = εχf(x) = 0

since E[p]χ = 0. Combining this fact with the result that CχEL is trivial shows that Hom(CL, E[p])G is itself trivial.

Now, δ1 is also G-equivariant so that δ1((O×L,P)χE ) = E[p]. This, together with with the fact that (O×L )χE ∼=

(O×L,P)χE , implies that δ1((O×L )χE ) = E[p] and, in particular, δ1(O×L ) 6= 0.

It then follows that S(ψE(p))(E) = 0 so by the exact sequence of Proposition A.6.2, we have E(K)/pE(K) = 01.

The Theorem now follows upon applying the Mordell-Weil Theorem. Indeed, suppose that E(K) were infinite.

Then the Mordell-Weil Theorem implies that E(K) = E(K)tors ⊕ Zr for some r ≥ 1. But then we would have

that E(K)/pE(K) 6= 0 which is a contradiction. Hence E(K) is finite as desired.

The following Corollary shows that the Coates-Wiles Theorem holds even when we drop the assumption that

E has complex multiplication by the maximal order OK .

Corollary 5.10. Let K be a quadratic imaginary number field of class number 1 and E/K an elliptic curve with

complex multiplication by an order in OK . If L(ψE , 1) 6= 0 then E(K) is finite.

Proof. By Proposition A.7.1, there exists an isogeny φ : E → E′ where E′/K is an elliptic curve over K that has

complex multiplication by OK . Recall that the L-functions of isogenous elliptic curves are equal2 (see [Kna92,

Theorem 11.67]), so that L(ψE , 1) 6= 0 if and only if L(ψE′ , 1) 6= 0. By the Coates-Wiles Theorem, E′(K) is then

1This exact sequence also implies that the p-part of the Tate-Shafarevich group X(E)p is trivial.
2The idea behind this is that isogenous elliptic curves have the same reduction type and have the same number of Fp-points for

each prime p of K. The Euler factors in the L-function then coincide.
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finite. We now claim that the rank of elliptic curves is an isogeny invariant. Indeed, consider the exact sequence

of abelian groups

0 kerφ E(K) E′(K) 0
φ

Since Q is a flat Z-module, we obtain an exact sequence

0 kerφ⊗Z Q E(K)⊗Z Q E′(K)⊗Z Q 0
φ

But the kernel of an isogeny is necessarily finite and, in particular, torsion so kerφ⊗ZQ = 0 whence E(K)⊗ZQ ∼=

E′(K)⊗Z Q. This implies that rankZ(E(K)) = rankZ(E′(K)) from which we may deduce that E(K) is finite.

Remark. The general case of an elliptic curve E with complex multiplication by an order in an imaginary quadratic

number field of non-trivial class number 1 can also be shown by similar techniques. The interested reader is

encouraged to see [Sha87].



Appendix

In this appendix we will give a brief exposition of definitions and well-known results from various fields which we

employ in this essay. We shall only provide the proofs for results for which no suitable reference could be found.

At the beginning of each section we shall mention relevant references where the reader may find all omitted proofs

(and more).

A.1 Class Field Theory

In this section we shall provide a concise exposition of the main results and concepts in global class field theory

from both the ideal and idèlic perspectives. Class field theory is vast and we cannot hope to provide details of all

the statements, let alone the proofs. That being said, the techniques and machinery provided by class field theory

will be crucial to our proof of the Coates-Wiles Theorem and of the construction of elliptic units in general so it

will be necessary to recall the most important elements of the theory. We shall not require much, if any, local

class field theory but it will be useful for us to recall a few concepts from this theory as well. The main reference

for this section will be [Dao17].

Let K be a number field and denote by OK its ring of integers. We shall write GK = Gal(K̄/K) for the

absolute Galois group of K. By a prime p of K, we mean an equivalence class of absolute values on K. Recall that

by Ostrowski’s Theorem, every absolute value | · |p on K is either a non-archimedean p-adic absolute value (with

associated valuation vp) or an archimedean absolute value. We may thus identify the primes of K with prime

ideals (henceforth the finite primes) of OK and the field embeddings K ↪→ C (henceforth the infinite primes).

Given a prime p of K, we shall write Kp for its completion with respect to p. If p is finite (p - ∞) then we shall

write OK,p for its ring of integers. If p is infinite (p | ∞) and corresponds to a real embedding we shall say that p

is real ; if it corresponds to a complex embedding we shall say that p is complex.

Let L/K be a Galois extension of number fields and p a finite prime of K. Then Gal(L/K) permutes the

primes P of L lying over p and this action is transitive. We define the decomposition group of L/K relative to P

to be

Gal(L/K)P = {σ ∈ Gal(L/K) | σ(P) = P }

It can be shown that Gal(L/K)P ∼= Gal(LP/Kp). Let FP = OL,P/P and Fp = OK,p be the residue fields of the

completions. Then Gal(LP/Kp) surjects onto Gal(FP/Fp) via the reduction map.

Thanks to this surjection, we may make the following definitions. We define the inertia group IP of L/K

relative to P to be the elements of Gal(L/K)P that reduce to the trivial automorphism of Gal(FP/Fp). If p

is unramified in L/K then [LP : Kp] is just the degree of the corresponding extension of residue fields and so

Gal(LP,Kp) ∼= Gal(FP,Fp). In this case, we define the Artin symbol or Frobenius element, denoted ((L/K),P)

of L/K relative to P to be the unique element of Gal(L/K)P that acts as Frobenius on FP/Fp.
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We recall that the Frobenius elements relative to primes above an unramified prime p are conjugates. In other

words, for all σ ∈ Gal(L/K) we have ((L/K), σ(P)) = σ ◦ ((L/K),P) ◦ σ−1. We then define the Artin symbol of

p in L/K, denoted ((L/K), p) to be the conjugacy class of ((L/K),P) for any prime P lying over p. We note that

if L/K is abelian then the conjugacy classes have a unique element and we identify ((L/K), p) with its unique

element.

Assume frome now on that L/K is a finite abelian extension of number fields.

Proposition A.1.1. Suppose that p is a finite unramified prime of K and P a prime of L lying over p. Then

((L/K), p) = 1 if and only if p splits completely in L.

Let S be a set that contains all the primes of K that ramify in L and ISK the subgroup of all fractional ideals of

K that do not contain a prime of S in their factorisation. We define the Artin map to be the unique homomorphism

ϕSL/K : ISK → Gal(L/K) that extends the Artin symbol.

Let MK be the set of all primes of K, M∞K the subset of infinite primes and M
-∞
K the subset of finite primes.

We define a modulus of K to be a function m : MK → Z such that

1. m(p) ≥ 0 for all p ∈MK and m(p) = 0 for all but finitely many p ∈M -∞
K .

2. m(p) = 0 or 1 for all real primes p.

3. m(p) = 0 for all complex primes p.

We can write a modulus as a formal product m =
∏

p∈MK
pm(p). Moreover, we can write m = m∞m0 where m∞

is the real infinite part of m and m0 is the finite part of m which can be identified with an integral ideal of OK .

Given two moduli m and n, we say that m divides n if m(p) ≤ n(p) for all p ∈MK .

Let m be a modulus of K and α ∈ K×. We say that α is multiplicatively congruent to 1 modulo m, denoted

α ≡ 1 (mod×m), if

1. α ∈ 1 + pm(p)Op,K for all finite primes p such that m(p) > 0.

2. |α|p > 0 for all real primes p such that m(p) > 0.

We now define a series of notations. We let IK be the group of fractional ideals of K, ImK the subgroup of fractional

ideals of K that are prime to a modulus m. Let PK be the subgroup of IK of principal ideals and similarly for

Pm
K . Furthermore, we define Pm,1

K = { (α) ∈ Pm
K | α ≡ 1 (mod×m) } ,Km = {α ∈ K× | (α) ∈ Pm

K } and similarly

for Km,1. Finally, we define the ray class group of K modulo m to be the factor group Cm
K = ImK/P

m,1
K .

Theorem A.1.2. Let m be a modulus of K and CK the ideal class group of K. Then we have an exact sequence

1 O×K/(O
×
K ∩Km,1) Km/Km,1 Cm

K CK 1

Furthermore, Km/Km,1 ∼= {±1 }|m∞| × (OK/m0)×. In particular, Cm
K is finite.

Theorem A.1.3 (Class Field Theory). Let m be a modulus for K. Then

1. (Existence) There exists an abelian extension of K, denoted K(m) and called the ray class field of K

modulo m, such that Cm
K
∼= Gal(K(m)/K) via the Artin map.
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2. (Completeness) Every finite abelian extension of K is contained in a ray class field of K for some modulus

m.

3. (Artin Recpirocity) For every intermediate field L of K(m)/K, the Artin map induces an isomorphism

ϕm
L/K :

ImK
Pm,1
K NL/K I

m
L

→ Gal(L/K)

Consider the trivial modulus 1 of K. Then H = K(1) is referred to as the Hilbert class field of K and satisfies

Gal(H/K) ∼= CK . It can be shown that H is the maximal unramified abelian extension of K.

We now discuss the idèlic theory. Let {Gi }i∈I be a family of locally compact groups and Ki ⊆ Gi an open

compact subgroup for each i ∈ S where S ⊆ I is finite. We define the restricted product of the Gi with respect to

the Ki to be ∏∐Ki

i∈I\S

Gi =

{
(gi) ∈

∏
i∈I

Gi

∣∣∣∣∣ gi ∈ Ki for all but finitely many i ∈ I\S

}

We equip the restricted product with the topology generated by the basis of open sets{∏
i∈I

Ai

∣∣∣∣∣ Ai is open in Gi and Ai = Ki for all but finitely many i ∈ I

}
It is an easy consequence of Tychonoff’s Theorem that the restricted product is a locally compact group. We

then define the idèle group of K to be

IK =
∏∐O×p,K

p∈MK\M∞K

K×p

It can be shown that K× embeds as a discrete subgroup of IK and so we define the idèle class group of K to

be CK = IK/K×. An important result concerning CK is that its every open subgroup has finite index which

is a consequence of the finiteness of the class number. If x ∈ IK , we define the ideal associated to x to be∏
p∈M -∞

K

pvp(xp) and we define the idealifier to be the map J : IK → IK sending an idèle to its associated ideal.

Furthermore, we define the idèle norm to be the map NL/K : IL → IK that sends x ∈ IL to y ∈ IK whose pth

component is
∏

P/p NLP/Kp
xP.

Proposition A.1.4. Let m be a modulus for K and define the groups

U
m(p)
K =



O×p,K if p -∞,m(p) = 0

1 + pm(p)Op,K if p -∞,m(p) > 0

K×p if p | ∞,m(p) = 0

R×>0 if p is real,m(p) > 0

Denote Um
K =

∏
p∈MK

U
m(p)
K . Then

1. Um
K is an open subgroup of IK .

2. Every open subgroup of IK contains Um
K for some modulus m.

3. CK/U
m
K
∼= Cm

K .

Theorem A.1.5 (Class Field Theory). Let Kab be the maximal abelian extension of K. Then there is a continuous
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surjective homomorphism called the Artin map

[·,Kab/K] : IK → Gal(Kab/K)

For an intermediate abelian field L of Kab/K write [·, L/K] = [·,Kab/K]|L. The Artin map satisfies the following

properties:

1. (Artin Reciprocity) [K×,Kab/K] = 1 and so the Artin map descends to a homomorphism CK → Gal(Kab/K)

which induces an isomorphism

[·,Kab/K] : ĈK → Gal(Kab/K)

where ĈK is the profinite completion of CK . Furthermore, for every finite abelian extension L/K, we have

an isomorphism

[·, L/K] : CK/NL/K CL → Gal(L/K)

2. (Existence) For every finite-index open subgroup N of CK , there exists a unique abelian extension L/K such

that N = NL/K CL. In particular, for every modulus m of K, the ray class field K(m) is the unique abelian

extension such that NK(m)/K CK(m) = Um
K .

3. (Compatibility) Let L/K be a finite abelian extension and x ∈ IK be an idèle such that I(x) is prime to all

finite primes of K that ramify in L. Then

[x, L/K] =

(
L/K

I(x)

)
4. (Norm Restriction) Let L/K be an extension of number fields. Then

[x, Lab/L] = [NL/K x,K
ab/K]

Let K be a number field and p a finite prime of K. We define the local Artin map [·,Kab
p /Kp] : K̂×p →

Gal(Kab
p /Kp) to be the restriction of the global Artin map to K×p considered as a subgroup of IK .

The following is a celebrated theorem from classical Class Field Theory. For a proof, see [Tri].

Theorem A.1.6 (Chebotarev Density Theorem). Let L/K be a Galois extension of number fields and C ⊆

Gal(L/K) a conjugacy class. Then there are infinitely many finite primes of K that do not ramify in L such that

((L/K), p) = C.

The following Proposition is not directly related to Class Field Theory but this is the most appropriate section

for it to be included in. For a proof, see [Ash10, 6.3.1].

Proposition A.1.7. Let K be an imaginary quadratic number field. Then |O×K | = 2, 4 or 6.

A.2 Galois Cohomology

Our next discussion will be regarding Galois cohomology. The main references for this section are [Sil09, Appendix

B] and [Ser97, §2].

Let G be a profinite group and M an abelian group equipped with the discrete topology on which G acts.

Denote by mσ the action of σ ∈ G on m ∈ M . We say that M is a G-module if the action of G on M is
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continuous and is compatible with the module structure of M . A homomorphism of G-modules M and N is a

group homomorphism M → N that commutes with the action of G.

From now on, fix a G-module M . We define the group of n-cochains, denoted Cn(G,M), to be the group

of all continuous functions from Gn → M . We define the coboundary homomorphisms to be the maps dn+1 :

Cn(G,M)→ Cn+1(G,M) given by the formula

(dn+1ϕ)(g1, . . . , gn+1) = g1ϕ(g2, . . . , gn+1) +

n∑
i=1

(−1)iϕ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+ (−1)n+1ϕ(g1, . . . , gn)

It can be checked that dn+1◦dn = 0. For all n ≥ 0, we define the group of n-cocycles to be Zn(G,M) = ker(dn+1)

and the group of n-cocycles to beBn(G,M) = im(dn) for n ≥ 1 and 0 when n = 0. We then define the n-cohomology

group to be the factor group Hn(G,M) = Zn(G,M)/Bn(G,M). For our purposes, it will be sufficient to give

explicit descriptions for the 0th and 1st-cohomology groups. We have that

H0(G,M) = MG = {m ∈M | mσ = m for all σ ∈ G }

Z1(G,M) = { c ∈ C1(G,M) : c(στ) = c(σ)τ + c(τ) }

B1(G,M) = { c ∈ C1(G,M) | there exists m ∈M such that c(σ) = mσ −m for all σ ∈ G }

We observe that if M is a G-module via the trivial action then H0(G,M) = M and H1(G,M) = Homcont(G,M).

Proposition A.2.1. Let

0 P M N 0
φ ψ

be a short exact sequence of G-modules. Then there exists a long exact sequence of cohomology groups

0 H0(G,P ) H0(G,M) H(G,N)

H1(G,P ) H1(G,M) H1(G,N)

φ0 ψ0

δ

φ1 ψ1

where the φ∗ and ψ∗ are the induced homomorphisms of cohomology groups and δ is the connecting homomorphism

defined as follows. Fix n ∈ H0(G,N) and choose m ∈ M such that ψ(m) = n. Define the cochain f ∈ C1(G,M)

by f(σ) = mσ −m and set δ(n) = [f ].

Let H be a subgroup of G. Then any G-module is naturally an H-module via restriction of the group action.

We define the restriction homomorphism of cohomology groups to be res : H1(G,M) → H1(H,M) given by

restriction of the domain of cochains to H. Now suppose that H is normal in G. Then MH is naturally a G/H-

module. Given a 1-cochain f : G/H →MH , we may compose f with the projection G→ G/H and the inclusion

MH ⊆M to obtain an inflation homomorphism of cohomology groups inf : H1(G/H,MH)→ H1(G,M).

Proposition A.2.2. Let M be a G-module and H a normal subgroup of G. Then we have an exact sequence

0 H1(G/H,MH) H1(G,M) H1(H,M)G/H H2(G/H,MH)inf res

Let K be a perfect field so that GK is a profinite group. Then a GK-module is an abelian group with an action

of the absolute Galois group GK . We shall often write simply H1(K,M) in the place of H1(GK ,M).
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Proposition A.2.3 (Hilbert’s Theorem 90). Let K be a perfect field. Then H1(K,K
×

) = 0

Proposition A.2.4. Let K be a perfect field such that char(K) = 0 or char(K) - m. Then H1(K,µm) ∼=

K×/(K×)m.

A.3 Character Theory

In this section we discuss certain key concepts concerning characters of finite groups. For any finite abelian group

G, let Ĝ denote its character group consisting of all characters of G into an algebraic closure Q of Q.

Let G be a finite abelian group and χ ∈ Ĝ a character. We define the χ-idempotent in the group ring Q[G] to

be

εχ =
1

|G|
∑
σ∈G

χ(σ)σ−1

The following Proposition provides us with the key properties of the χ-idempotent. Since the proof is straight-

forward, we provide it for completeness.

Proposition A.3.1. Let G be a finite abelian group and χ ∈ Ĝ a character. Then the χ-idempotent is indeed an

idempotent element of the group ring Q[G]. Moreover,

1. Given another character χ 6= ψ ∈ Ĝ we have εχεψ = 0.

2.
∑
χ∈Ĝ εχ = 1.

3. For all σ ∈ G we have εχσ = χ(σ)εχ.

Proof. We first show that εχ is idempotent. Indeed,

ε2
χ = |G|−2

(∑
σ∈G

χ(σ−1)σ

)(∑
τ∈G

χ(τ−1)τ

)
= |G|−2

∑
σ∈G

σ

(∑
τ∈G

χ(τ−1)χ(τσ−1)

)

= |G|−2
∑
σ∈G

σ
(
|G|χ(σ−1)

)
=

1

|G|
∑
σ∈G

χ(σ−1)σ = εχ

Now suppose that ψ is another character of G distinct from χ. By the orthogonality of characters, we have that

εχεψ = |G|−2

(∑
σ∈G

χ(σ−1)σ

)(∑
τ∈G

ψ(τ−1)τ

)
= |G|−2

∑
σ∈G

(∑
τ∈G

χ(τ−1)ψ(τσ−1)

)

= |G|−2
∑
σ∈G

ψ(σ−1)

(∑
τ∈G

χ(τ−1)ψ(τ)

)
= 0

Since
∑
χ∈Ĝ χ(g) = |G| if g = 1 and 0 otherwise, the summation assertion follows immediately. Finally, fix σ ∈ G.

Then

εχσ =
1

G

∑
τ∈G

χ(τ)τ−1σ =
1

|G|
∑
γ∈G

χ(γ−1σ)γ = χ(σ)εχ

which proves the final assertion.

Proposition A.3.2. Let M be a Q[G]-module. Then M admits a decomposition into Q[G]-submodules of M,M =⊕
χ∈ĜM

χ where Mχ = εχM is the so-called χ-eigenspace of M .
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Proof. By Part 2 of Proposition A.3.1, it follows that M is the sum of the Mχ. To see that it is in fact a direct

sum, suppose that Mχ and Mψ are two distinct eigenspaces. We need to show that Mχ ∩Mψ = { 0 }. To this

end, suppose that α is an element of both Mχ and Mψ. Then α = mχ and α = nψ for some m,n ∈ M so

that mχ = nψ. By the idempotency of ε, we have that mχ = (nψ)χ. Appealing to the orthogonality of ε yields

mχ = 0.

Remark. We observe that if R is a commutative ring containing the images of every χ ∈ Ĝ and in which |G| is a

unit, then the above results all hold completely analogously for the group ring R[G].

A.4 Elliptic Curves over the Complex Numbers

In this section we shall state results and definitions of the analytic theory of elliptic curves defined over C. The

main references for this section are [Sil09, Chapter VI] and [Sil94, §I.5]. Fix a lattice L ⊆ C. We define the

Weierstrass functions

ζ(z;L) =
1

z

∑
06=w∈L

(
1

z − w
+

1

w
+

z

w2

)

℘(z;L) =
1

z2

∑
06=w∈L

(
1

(z − w)2
− 1

w2

)
σ(z;L) = z

∏
06=w∈L

(
1− z

w

)
e(z/w)+ 1

2 (z/w)2

Furthermore, let covol(C/L) be the covolume of a fundamental paralellogram for L. We define

A(L) = π−1 covol(C/L)

s2(L) = lim
s→0+

∑
06=w∈L

w−2s|w|−2s

Gk(L) =
∑

06=w∈L

1

wk
, k ∈ N≥4 and k even

We finally define the quasi-period map to be

η(z;L) = A(L)−1z + s2(L)z

The main properties of the Weierstrass functions of interest to us are summarised in the following proposition.

Proposition A.4.1.

1. σ(z; Λ) defines a holomorphic function on C with simple zeroes on L and no other zeroes.

2. For all z ∈ C we have

d

dz
ζ(z;L) = −℘(z;L),

d

dz
log(σ(z;L)) = ζ(z;L)

3. For all z ∈ C and w ∈ L we have

σ(z + w;L) = ψ(w)eη(w)(z+ 1
2w)σ(z, L)

where ψ : L→ {±1 } is defined by ψ(w) = 1 if w ∈ 2L and ψ(w) = −1 if w 6∈ 2L.
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Theorem A.4.2. There is an equivalence of categories Objects: Elliptic curves defined over C

Morphisms: Isogenies

←→
 Objects: Lattices L ⊆ C up to homothety

Morphisms: Hom(L1, L2) = {α ∈ C | αL1 ⊆ L2 }


This correspondence can be made explicit in the following way. Suppose that we are given a lattice L ⊆ C.

Then the Weierstrass equation y2 = x3 − 15G4(L)x − 35G6(L) defines an elliptic curve E/C and we have an

analytic isomorphism

ξ : C/L→ E(C)

z 7→ (℘(z;L), ℘′(z;L)/2)

Moreover, the discriminant and j-invariant of E are given by

∆(L) = (60G4(L))3 − 27(140G6(L))2

j(L) = −1728(60G4(L))3/∆(L)

Conversely, suppose that we are given an elliptic curve E/C with a fixed Weierstrass model y2 = x3 + ax+ b.

Then the Uniformisation Theorem guarantees the existence of a lattice L ⊆ C such that 15G4(L) = −a and

35G6(L) = −b.

We note that this correspondence identifies the holomorphic invariant differential of an elliptic curve ωE with

the differential dz.

Recall that en elliptic function relative to L is a meromorphic function f(z) on C that is periodic with respect

to L. In other words, for all z ∈ C and w ∈ L we have

f(z + w) = f(z)

We denote by C(L) the field of all elliptic functions relative to L.

Proposition A.4.3. Let L ⊆ C be a lattice. Then

C(L) = C(℘(z), ℘′(z))

A.5 Elliptic Curves over Non-Archimedean Local Fields

We will now recall key results concerning elliptic curves over local fields. The main references for this section are

[Rub99, §3] and [Sil09, Chapter VII].

Fix a rational prime p and a finite extension F of Qp with ring of integers OF . Let p be the maximal ideal of

OF and π a uniformiser for p so that Fp = OF /p is the residue field of F . Let vp be the p-adic valuation on F ,

normalised so that vp(π) = 1.

Let E be an elliptic curve defined over F . We say that a particular Weierstrass model with coefficients in OF
of E is minimal with respect to vp if the valuation of its discriminant is minimal amongst all the valuations of

discriminants of such Weierstrass models. From now on, we fix a minimal model of E with minimal discriminant

∆. We define the reduction of E, denoted E, to be the curve given by reducing the coefficients of the Weierstrass

model of E modulo p. It can be shown that such a curve is independent of the choice of minimal model of E and

has, at most, one singular point. We denote by Ens the quasi-projective curve obtained by removing the singular
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point from E which is also an abelian group. Denote by E0(F ) all the points of E with non-singular reduction

and E1(F ) the kernel of reduction.

Proposition A.5.1. There exists an exact sequence of abelian groups

0 E1(F ) E0(F ) Ens(Fp) 0

Proposition A.5.2. We have that

E1(F ) = { (x, y) ∈ E(F ) | vp(x) < 0 } = { (x, y) ∈ E(F ) | vp(y) < 0 }

Moreover, if (x, y) ∈ E1(F ) then 3v(x) = 2v(y).

We say that E has good reduction if ∆ ∈ O×F and E is non-singular. If not then E is always singular and we say

that E has bad reduction. Moreover, we say that E has potentially good reduction if there exists a finite extension

of F over which E has good reduction.

Proposition A.5.3. Suppose that E has good reduction. Then the reduction map E(F ) → E(Fp) induces an

injection of endomorphism rings EndF (E) → EndFp
(E) which sends an endomorphism of E to its corresponding

endomorphism φ of E.

Proposition A.5.4. Suppose that E has good reduction and let φ ∈ EndF (E) be such that φ is purely inseparable.

Then φ is injective and ker(φ) ⊆ E1(F ).

Recall that E admits a formal group Ê with formal group law FE ∈ OF [[Z,Z ′]]. Moreover, we have a power

series w(Z) = Z3
∑∞
i=0AiZ

i for some Ai ∈ Z[a1, . . . , a6] and power series x(Z) = Z/w(Z) and y(Z) = −1/w(Z)

giving an F ((Z))-rational point (x(Z), y(Z)) of E. x(Z) and y(Z) are compatible with the formal group law in

the following sense

(x(Z), y(Z)) + (x(Z ′), y(Z ′)) = (x(FE(Z,Z ′)), y(FE(Z,Z ′)))

We also have a map EndF (E) → End(Ê) that takes an endomorphism φ of E and maps it to an endomorphism

Φ of Ê satisfying φ(x(Z), y(Z)) = (x(Φ(Z)), y(Φ(z)). Given n ∈ N≥1, we let Ê(pn) be the abelian group on the

set pn with group law given by (x, x′) 7→ FE(x, x′).

Proposition A.5.5. We have an isomorphism

Ê(p)→ E1(F )

Z 7→ (x(Z), y(Z))

with inverse given by the map (x, y) 7→ −x/y.

Proposition A.5.6. Suppose that E has good reduction and let q be the cardinality of the residue field of F . If

φ ∈ EndF (E) reduces to the Frobenius endomorphism φq of E then Φ(Z) ≡ Zq (mod pOF [[Z]]).

We now recall that we have a formal analogue of the invariant differential given by

ω̂(Z) =
x′(Z)

2y(Z) + a1x(Z) + a3

We next define the formal logarithm map λÊ(Z) to be the unique power series such that λ′
Ê

(Z) = ŵ(Z) which

converges on p and induces an isomorphism Ê(p) → p when vp(p) < p− 1. We furthermore define the logarithm
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map of E λE : E1(F )→ F to be the composition of the isomorphism of Proposition A.5.5 with the inverse of the

isomorphism of λÊ . Hence if vp(p) < p− 1 then λE : E1(F )→ p is an isomorphism.

Let DF (E) ∼= F be the vector space of one-dimensional holomorphic differentials on E defined over F. Every

endomorphism φ of E induces an endomorphism φ∗ of DF (E) and we therefore have an injective homomorphism

of abelian groups1

ι : EndF (E)→ EndF (DF (E)) ∼= F

Proposition A.5.7. Let φ ∈ EndF (E). If ι(φ) ∈ O×F then φ is an automorphism of E1(F ). Moreover, if E has

good reduction then the reduction homomorphism E[φ] ∩ E(F )→ E(Fp) is injective.

Proposition A.5.8. Suppose E has good reduction and let φ ∈ EndF (E) be an endomorphism such that ι(φ) ∈ O×F .

If P ∈ E(F )) is such that φ(P ) ∈ E(F ) then the extension F (E[φ], P )/F (obtained by adjoining the coordinates

of the relevant points) is unramified.

A.6 Elliptic Curves over Global Fields

We next recall key results about elliptic curves over number fields. The main references for this section are [Sil09,

§VIII.4] and [Sil09, §X.4].

Let K be a number field and E an elliptic curve defined over K. Let p be a finite prime of K. We say that E has

good (respectively bad and potentially good) reduction at p if E/Kp does. Let ∆p(E) be the minimal discriminant

of E/Kp. Since E has only finitely many primes of bad reduction, we may define the minimal discriminant of K

to be ∆(E) =
∏

p∈M -∞
K

∆p(E).

Theorem A.6.1 (Mordell-Weil). E(K) is a finitely generated abelian group.

We now identify EndK(E) with its image O ⊆ K under the map ι. It can be shown that O is either Z or an

order in an imaginary quadratic number field2 Fix a non-constant endomorphism α ∈ O of E, let E[α] denote its

kernel on K and K(E[α]) the finite extension of K gven by adjoining the coordinates of the points in E[α] to K.

Since multiplication by α is surjective we have an exact sequence of abelian groups

0 E[α] E(K) E(K) 0α

Note that each of these abelian groups admits a natural GK-action given by the GK-action on the coordinates.

In particular, they are GK-modules so passing to GK-cohomology yields a long exact sequence

0 H0(K,E[α]) E(K) E(K)

H1(K,E[α]) H1(K,E) H1(K,E)

α0

δ

α1

where we have written H1(K,E) = H1(K,E(K)) to ease notation. Writing H1(K,E)α for the kernel of α1, this

may be written as a short exact sequence

1Note that this definition works for elliptic curves over arbitrary fields but it is only injective if the characteristic of the defining
field is 0.

2This much is true for any elliptic curve over a characteristic 0 field. If the characteristic is not 0 then O may be an order in a
quaternion algebra over Q.



A.7. Complex Multiplication 61

0 E(K)/αE(K) H1(K,E[α]) H1(K,E)α 0δ

Given a prime p of K, we may repeat the same process with E considered as defined over Kp to obtain a

commutative diagram with exact rows

0 E(K)/αE(K) H1(K,E[α]) H1(K,E)α 0

0
∏

p∈MK

E(Kp)/αE(Kp)
∏

p∈MK

H1(Kp, E[α])
∏

p∈MK

H1(Kp, E)α 0

δ

res res

δ

Explicitly, the second vertical map res is given coordinate-wise by the cohomological restriction mapH1(K,E[α])
resp−−→

H1(Kp, E[α]) and similarly for the third one. We define the α-Selmer group, denoted S(α)(E), to be the kernel of

the dotted homomorphism in the diagram above. Since the rows are exact, we have the following two equivalent

definitions for the α-Selmer group

S(α)(E) = ker

H1(K,E[α])→
∏

p∈MK

H1(Kp, E[α])


= { c ∈ H1(K,E[α]) | resp ∈ im(δp) for all p ∈MK }

It can be shown that the α-Selmer group of E is finite. Moreover, we define the Tate-Shafarevich group of E,

denoted X(E) to be

X(E) = ker

H1(K,E)→
∏

p∈MK

H1(Kp, E)


The non-trivial elements of the Tate-Shafarevich group can be interpreted as the homogeneous spaces of E that

have Kp-rational points for every prime p of K but no K-rational points. In other words, the Tate-Shafarevich

group is a measure of how well E satisfies the Hasse principal - if X(E) is trivial then the Hasse principle holds.

It is an important and long-standing conjecture that the Tate-Shafarevich group is finite. Rubin verified this for

particular elliptic curves with complex multiplication using many of the methods we develop in this essay.

Proposition A.6.2. Let α ∈ O be a non-constant endomorphism of E. Then there exists an exact sequence

0 E(K)/αE(K) S(α)(E) X(E)α 0

In particular, if S(α)(E) is trivial then so is E(K)/αE(K) and X(E)α.

A.7 Complex Multiplication

In this final preliminary section, we discuss results about elliptic curves with complex multiplication. The main

reference for this section is [Rub99, §5].

Let L be a subfield of C and E/L an elliptic curve. We say that E has complex multiplication if EndL(E) 6∼= Z.

In this case, EndL(E) is an order O in an imaginary quadratic number field. Let K = QO be the imaginary

quadratic field containing O. Given an ideal a / O, we write E[a] =
⋂
α∈aE[α]. If p is a prime ideal of O then

we write E[p∞] =
⋃
n∈N≥1

E[pn]. Via the correspondence in Theorem A.4.2, we may fix a lattice Λ ⊆ C and an

analytic isomorphism C/Λ ξ−→ E(C). We may scale Λ by a constant in C so that Λ ⊆ K whence Λ is a fractional

ideal of O.
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Proposition A.7.1. There exists an isogeny φ : E → E′ where E′ is an elliptic curve defined over L with complex

multiplication by the maximal order OK .

In light of this Proposition, we may assume that E has complex multiplication by OK .

Theorem A.7.2. Let a / OK be a non-trivial ideal. Then E[a] ∼= OK/a as OK-modules. Via the analytic

isomorphism ξ we then also have that a−1Λ/Λ ∼= OK/a. Moreover, this isomorphism induces an injection

Gal(L(E[a])/L) ↪→ OK/a×. In particular, L(E[a])/L is an abelian extension.

Theorem A.7.3. Let l be a rational prime and F a finite extension of Ql. Then

1. E has potentially good reduction.

2. If p is a prime of K not dividing l and n ∈ N≥1 is such that 1 + OK,p is torsion free then E has good

reduction when considered defined over F (E[pn]) at all primes not dividing p.

The next two Theorems are consequences of the Fundamental Theorem of Complex Multiplication (see [Rub99,

Theorem 5.11]).

Proposition A.7.4. Let H be the Hilbert class field of K. Then there exists an elliptic curve defined over H with

complex multiplication by OK which is isomorphic to E over C.

Recall that a Hecke character of a number field L is a homomorphism of groups ψ : IL/L× → C×. We say

that ψ is unramified at a prime P of K if ψ(O×K,P) = 1.

Theorem A.7.5. There exists a Hecke character ψE : IL/L× → C× associated to E such that

1. The conductor f of ψE is divisible by exactly the primes of bad reduction of E.

2. If x ∈ IL is an idèle and y = NL/K(x) ∈ IK is the idèle norm of x then

ψE(x)OK = y−1
∞ J(y)OK

where y∞ is the component of y corresponding to the unique complex prime of K.

3. If x ∈ IL is an idèle taking the value 1 on all infinite primes of L and p is a finite prime of K then

ψE(x)(NL/K(x))−1
p ∈ O×K,p. Moreover, for all P ∈ E[p∞] we have

[x, Lab/L]P = ψE(x)(NL/K(x))−1
p P

4. If P is a finite prime of L then ψE is unramified at P if and only if E has good reduction at P.

Any Hecke character of conductor f yields a Hecke character in the classical sense ψ : IfL → C× (see [CF67,

§VIII.1]). We may thus translate the above Theorem to the classical sense as follows

Theorem A.7.6. Let f /OL be ideal given by the product of all primes of bad reduction of E. Then there exists

a Hecke character ψE : IfL → C× such that

1. For all ideals b /OL prime to f we have ψE(b)OK = NL/K(b)OK .

2. Given a finite prime P of L and an ideal b /OL both prime to f then the action of [P, L(E[b])/L] on E[b]

is given by multiplication by ψE(P).
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3. If P is a prime of good reduction of E then the endomorphism ψE(P) acts as Frobenius on E(Fq).

Proposition A.7.7. Let p be a finite prime of L. Then there exists a curve isomorphic to E over L with good

reduction at p.

Proposition A.7.8. Suppose that E is defined over K.

1. If p is a finite prime of K such that the reduction map (OK)× → (OK/p)× is not surjective then E[p] 6⊆ E(K).

2. If f is the conductor of ψE then the reduction map O×K → (OK/f)× is injective. In particular, E does not

have good reduction at all primes of K.

The following Theorem is a collection of important results that (partially) show that elliptic curves with

complex multiplication give an explicit description of class field theory for imaginary quadratic fields.

Theorem A.7.9. Suppose that E is defined over K, a /OK an ideal and p a finite prime of K, both prime to 6f.

Then

1. E[af] ⊆ E(K(af) and Gal(K(E[a])/K) ∼= (OK/a)×.

2. If b divides a then Gal(K(E[a])/K(E[b])) ∼= Gal(K(af)/K(bf)).

3. K(E[apn])/K(E[a]) is totally ramified above p.

4. If the reduction map (OK)× → (OK/a)× is injective then K(E[apn])/K(E[a]) is unramified outside of p.

We define the Hecke L-function associated to powers of ψE to be analytic continuation of the Dirichlet series

L(ψkE , s) =
∑
b/OK

(b,fk)=1

ψkE(b)

Nbs

where fk is taken to mean the conductor of ψkE . It is a Theorem of Hecke that this Dirichlet series does indeed

admit an analytic continuation. If m is prime to f and c is prime to m then we define the partial L-function

Lm(ψkE , s, c) similarly but with the summation restricted to ideals b /OK such that [b,K(m)/K] = [c,K(m)/K].

We note that if L(E, s) is the L-function of E in the usual sense then L(E, s) = L(ψE , s)L(ψE , S) (see [Sil09,

§II.10]).



Notation Index
Symbol Meaning Page

S(α)(E) Relaxed α-Selmer group of the elliptic curve E 5

〈·, ·〉πn πn-Kummer pairing 7

δn πn-reciprocity map 8

ΘE,a Θ-function of the elliptic curve E/K with respect to the auxilliary ideal a ∈ OK 12

E[b]∗ E[b]\ {OE } 12

a−1Λ/Λ∗ (a−1Λ/Λ)\ { 0 } 20

θ(z;L) Fundamental θ-function of the lattice L 20

Ek(z;L) Eisenstein series of weight k attached to the lattice L 21

ΦE,a Φ-function of the elliptic curve E/K with respect to the auxiliary ideal a /OK 22

ηn(r) Elliptic unit of given by n ∈ N≥0 and r ∈ R 26

Dr r-derivative operator in Z[Gr] 30

Nr r-norm operator in Z[Gr] 30

((L/K), p) Artin symbol of the unramified prime p in the Galois extension L/K 51

CK Ideal class group of the number field K 52

Cm
K Ray class group of the number field K modulo m 52

K(m) Ray class field of the number field K modulo m 52

[·,Kab/K] Artin map of the global or local field K 53

IK Idèle group of the number field K 53

J Idealifier map J : IK → IK 53

CK Idèle class group of the number field K 53

Hn(K,M) nth-cohomology group of the GK-module M 55

eχ χ-idempotent of a character χ : G→ Q 56

η(z;L) Quasi-period map associated to the lattice L 57

σ(z;L) Weierstrass σ-function associated to the lattice L 57

℘(z;L) Weierstrass ℘-function associated to the lattice L 57

ζ(z;L) Weierstrass ζ-function associated to the lattice L 57

S(α)(E) α-Selmer group of the elliptic curve E 61

X(E) Tate-Shafarevich group of the elliptic curve E 61

f Conductor of the Hecke character ψE associated to the elliptic curve E 62

ψE Hecke character associated to the elliptic curve E 62

L(ψkE , s) Hecke L-function associated to E 63

Lm(ψkE , s, c) Partial Hecke L-function associated to E 63
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